Integrale di $$$\cos{\left(4 t \right)}$$$
Calcolatore correlato: Calcolatore di integrali definiti e impropri
Il tuo input
Trova $$$\int \cos{\left(4 t \right)}\, dt$$$.
Soluzione
Sia $$$u=4 t$$$.
Quindi $$$du=\left(4 t\right)^{\prime }dt = 4 dt$$$ (i passaggi si possono vedere »), e si ha che $$$dt = \frac{du}{4}$$$.
Pertanto,
$${\color{red}{\int{\cos{\left(4 t \right)} d t}}} = {\color{red}{\int{\frac{\cos{\left(u \right)}}{4} d u}}}$$
Applica la regola del fattore costante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{4}$$$ e $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:
$${\color{red}{\int{\frac{\cos{\left(u \right)}}{4} d u}}} = {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{4}\right)}}$$
L'integrale del coseno è $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$\frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{4} = \frac{{\color{red}{\sin{\left(u \right)}}}}{4}$$
Ricordiamo che $$$u=4 t$$$:
$$\frac{\sin{\left({\color{red}{u}} \right)}}{4} = \frac{\sin{\left({\color{red}{\left(4 t\right)}} \right)}}{4}$$
Pertanto,
$$\int{\cos{\left(4 t \right)} d t} = \frac{\sin{\left(4 t \right)}}{4}$$
Aggiungi la costante di integrazione:
$$\int{\cos{\left(4 t \right)} d t} = \frac{\sin{\left(4 t \right)}}{4}+C$$
Risposta
$$$\int \cos{\left(4 t \right)}\, dt = \frac{\sin{\left(4 t \right)}}{4} + C$$$A