Integrale di $$$a^{2} \cos{\left(x \right)} - x^{2}$$$ rispetto a $$$x$$$

Il calcolatore troverà l'integrale/antiderivata di $$$a^{2} \cos{\left(x \right)} - x^{2}$$$ rispetto a $$$x$$$, con i passaggi mostrati.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int \left(a^{2} \cos{\left(x \right)} - x^{2}\right)\, dx$$$.

Soluzione

Integra termine per termine:

$${\color{red}{\int{\left(a^{2} \cos{\left(x \right)} - x^{2}\right)d x}}} = {\color{red}{\left(- \int{x^{2} d x} + \int{a^{2} \cos{\left(x \right)} d x}\right)}}$$

Applica la regola della potenza $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=2$$$:

$$\int{a^{2} \cos{\left(x \right)} d x} - {\color{red}{\int{x^{2} d x}}}=\int{a^{2} \cos{\left(x \right)} d x} - {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=\int{a^{2} \cos{\left(x \right)} d x} - {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$

Applica la regola del fattore costante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=a^{2}$$$ e $$$f{\left(x \right)} = \cos{\left(x \right)}$$$:

$$- \frac{x^{3}}{3} + {\color{red}{\int{a^{2} \cos{\left(x \right)} d x}}} = - \frac{x^{3}}{3} + {\color{red}{a^{2} \int{\cos{\left(x \right)} d x}}}$$

L'integrale del coseno è $$$\int{\cos{\left(x \right)} d x} = \sin{\left(x \right)}$$$:

$$a^{2} {\color{red}{\int{\cos{\left(x \right)} d x}}} - \frac{x^{3}}{3} = a^{2} {\color{red}{\sin{\left(x \right)}}} - \frac{x^{3}}{3}$$

Pertanto,

$$\int{\left(a^{2} \cos{\left(x \right)} - x^{2}\right)d x} = a^{2} \sin{\left(x \right)} - \frac{x^{3}}{3}$$

Aggiungi la costante di integrazione:

$$\int{\left(a^{2} \cos{\left(x \right)} - x^{2}\right)d x} = a^{2} \sin{\left(x \right)} - \frac{x^{3}}{3}+C$$

Risposta

$$$\int \left(a^{2} \cos{\left(x \right)} - x^{2}\right)\, dx = \left(a^{2} \sin{\left(x \right)} - \frac{x^{3}}{3}\right) + C$$$A


Please try a new game Rotatly