Integrale di $$$\cos{\left(5 x \right)}$$$

La calcolatrice troverà l'integrale/primitiva di $$$\cos{\left(5 x \right)}$$$, mostrando i passaggi.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int \cos{\left(5 x \right)}\, dx$$$.

Soluzione

Sia $$$u=5 x$$$.

Quindi $$$du=\left(5 x\right)^{\prime }dx = 5 dx$$$ (i passaggi si possono vedere »), e si ha che $$$dx = \frac{du}{5}$$$.

Quindi,

$${\color{red}{\int{\cos{\left(5 x \right)} d x}}} = {\color{red}{\int{\frac{\cos{\left(u \right)}}{5} d u}}}$$

Applica la regola del fattore costante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{5}$$$ e $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:

$${\color{red}{\int{\frac{\cos{\left(u \right)}}{5} d u}}} = {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{5}\right)}}$$

L'integrale del coseno è $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:

$$\frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{5} = \frac{{\color{red}{\sin{\left(u \right)}}}}{5}$$

Ricordiamo che $$$u=5 x$$$:

$$\frac{\sin{\left({\color{red}{u}} \right)}}{5} = \frac{\sin{\left({\color{red}{\left(5 x\right)}} \right)}}{5}$$

Pertanto,

$$\int{\cos{\left(5 x \right)} d x} = \frac{\sin{\left(5 x \right)}}{5}$$

Aggiungi la costante di integrazione:

$$\int{\cos{\left(5 x \right)} d x} = \frac{\sin{\left(5 x \right)}}{5}+C$$

Risposta

$$$\int \cos{\left(5 x \right)}\, dx = \frac{\sin{\left(5 x \right)}}{5} + C$$$A


Please try a new game Rotatly