Integrale di $$$\cos{\left(\frac{2 x}{\pi} \right)}$$$

La calcolatrice troverà l'integrale/primitiva di $$$\cos{\left(\frac{2 x}{\pi} \right)}$$$, mostrando i passaggi.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int \cos{\left(\frac{2 x}{\pi} \right)}\, dx$$$.

Soluzione

Sia $$$u=\frac{2 x}{\pi}$$$.

Quindi $$$du=\left(\frac{2 x}{\pi}\right)^{\prime }dx = \frac{2}{\pi} dx$$$ (i passaggi si possono vedere »), e si ha che $$$dx = \frac{\pi du}{2}$$$.

Quindi,

$${\color{red}{\int{\cos{\left(\frac{2 x}{\pi} \right)} d x}}} = {\color{red}{\int{\frac{\pi \cos{\left(u \right)}}{2} d u}}}$$

Applica la regola del fattore costante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{\pi}{2}$$$ e $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:

$${\color{red}{\int{\frac{\pi \cos{\left(u \right)}}{2} d u}}} = {\color{red}{\left(\frac{\pi \int{\cos{\left(u \right)} d u}}{2}\right)}}$$

L'integrale del coseno è $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:

$$\frac{\pi {\color{red}{\int{\cos{\left(u \right)} d u}}}}{2} = \frac{\pi {\color{red}{\sin{\left(u \right)}}}}{2}$$

Ricordiamo che $$$u=\frac{2 x}{\pi}$$$:

$$\frac{\pi \sin{\left({\color{red}{u}} \right)}}{2} = \frac{\pi \sin{\left({\color{red}{\left(\frac{2 x}{\pi}\right)}} \right)}}{2}$$

Pertanto,

$$\int{\cos{\left(\frac{2 x}{\pi} \right)} d x} = \frac{\pi \sin{\left(\frac{2 x}{\pi} \right)}}{2}$$

Aggiungi la costante di integrazione:

$$\int{\cos{\left(\frac{2 x}{\pi} \right)} d x} = \frac{\pi \sin{\left(\frac{2 x}{\pi} \right)}}{2}+C$$

Risposta

$$$\int \cos{\left(\frac{2 x}{\pi} \right)}\, dx = \frac{\pi \sin{\left(\frac{2 x}{\pi} \right)}}{2} + C$$$A


Please try a new game Rotatly