Integrale di $$$8 \tan{\left(x \right)} \sec^{3}{\left(x \right)}$$$
Calcolatore correlato: Calcolatore di integrali definiti e impropri
Il tuo input
Trova $$$\int 8 \tan{\left(x \right)} \sec^{3}{\left(x \right)}\, dx$$$.
Soluzione
Applica la regola del fattore costante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=8$$$ e $$$f{\left(x \right)} = \tan{\left(x \right)} \sec^{3}{\left(x \right)}$$$:
$${\color{red}{\int{8 \tan{\left(x \right)} \sec^{3}{\left(x \right)} d x}}} = {\color{red}{\left(8 \int{\tan{\left(x \right)} \sec^{3}{\left(x \right)} d x}\right)}}$$
Sia $$$u=\sec{\left(x \right)}$$$.
Quindi $$$du=\left(\sec{\left(x \right)}\right)^{\prime }dx = \tan{\left(x \right)} \sec{\left(x \right)} dx$$$ (i passaggi si possono vedere »), e si ha che $$$\tan{\left(x \right)} \sec{\left(x \right)} dx = du$$$.
Pertanto,
$$8 {\color{red}{\int{\tan{\left(x \right)} \sec^{3}{\left(x \right)} d x}}} = 8 {\color{red}{\int{u^{2} d u}}}$$
Applica la regola della potenza $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=2$$$:
$$8 {\color{red}{\int{u^{2} d u}}}=8 {\color{red}{\frac{u^{1 + 2}}{1 + 2}}}=8 {\color{red}{\left(\frac{u^{3}}{3}\right)}}$$
Ricordiamo che $$$u=\sec{\left(x \right)}$$$:
$$\frac{8 {\color{red}{u}}^{3}}{3} = \frac{8 {\color{red}{\sec{\left(x \right)}}}^{3}}{3}$$
Pertanto,
$$\int{8 \tan{\left(x \right)} \sec^{3}{\left(x \right)} d x} = \frac{8 \sec^{3}{\left(x \right)}}{3}$$
Aggiungi la costante di integrazione:
$$\int{8 \tan{\left(x \right)} \sec^{3}{\left(x \right)} d x} = \frac{8 \sec^{3}{\left(x \right)}}{3}+C$$
Risposta
$$$\int 8 \tan{\left(x \right)} \sec^{3}{\left(x \right)}\, dx = \frac{8 \sec^{3}{\left(x \right)}}{3} + C$$$A