Integrale di $$$- \frac{x^{5}}{6} + 5 x$$$

La calcolatrice troverà l'integrale/primitiva di $$$- \frac{x^{5}}{6} + 5 x$$$, mostrando i passaggi.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int \left(- \frac{x^{5}}{6} + 5 x\right)\, dx$$$.

Soluzione

Integra termine per termine:

$${\color{red}{\int{\left(- \frac{x^{5}}{6} + 5 x\right)d x}}} = {\color{red}{\left(\int{5 x d x} - \int{\frac{x^{5}}{6} d x}\right)}}$$

Applica la regola del fattore costante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=5$$$ e $$$f{\left(x \right)} = x$$$:

$$- \int{\frac{x^{5}}{6} d x} + {\color{red}{\int{5 x d x}}} = - \int{\frac{x^{5}}{6} d x} + {\color{red}{\left(5 \int{x d x}\right)}}$$

Applica la regola della potenza $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=1$$$:

$$- \int{\frac{x^{5}}{6} d x} + 5 {\color{red}{\int{x d x}}}=- \int{\frac{x^{5}}{6} d x} + 5 {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=- \int{\frac{x^{5}}{6} d x} + 5 {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$

Applica la regola del fattore costante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\frac{1}{6}$$$ e $$$f{\left(x \right)} = x^{5}$$$:

$$\frac{5 x^{2}}{2} - {\color{red}{\int{\frac{x^{5}}{6} d x}}} = \frac{5 x^{2}}{2} - {\color{red}{\left(\frac{\int{x^{5} d x}}{6}\right)}}$$

Applica la regola della potenza $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=5$$$:

$$\frac{5 x^{2}}{2} - \frac{{\color{red}{\int{x^{5} d x}}}}{6}=\frac{5 x^{2}}{2} - \frac{{\color{red}{\frac{x^{1 + 5}}{1 + 5}}}}{6}=\frac{5 x^{2}}{2} - \frac{{\color{red}{\left(\frac{x^{6}}{6}\right)}}}{6}$$

Pertanto,

$$\int{\left(- \frac{x^{5}}{6} + 5 x\right)d x} = - \frac{x^{6}}{36} + \frac{5 x^{2}}{2}$$

Semplifica:

$$\int{\left(- \frac{x^{5}}{6} + 5 x\right)d x} = \frac{x^{2} \left(90 - x^{4}\right)}{36}$$

Aggiungi la costante di integrazione:

$$\int{\left(- \frac{x^{5}}{6} + 5 x\right)d x} = \frac{x^{2} \left(90 - x^{4}\right)}{36}+C$$

Risposta

$$$\int \left(- \frac{x^{5}}{6} + 5 x\right)\, dx = \frac{x^{2} \left(90 - x^{4}\right)}{36} + C$$$A


Please try a new game Rotatly