Integrale di $$$5 e^{5 s} \sin{\left(e^{5 s} \right)}$$$
Calcolatore correlato: Calcolatore di integrali definiti e impropri
Il tuo input
Trova $$$\int 5 e^{5 s} \sin{\left(e^{5 s} \right)}\, ds$$$.
Soluzione
Applica la regola del fattore costante $$$\int c f{\left(s \right)}\, ds = c \int f{\left(s \right)}\, ds$$$ con $$$c=5$$$ e $$$f{\left(s \right)} = e^{5 s} \sin{\left(e^{5 s} \right)}$$$:
$${\color{red}{\int{5 e^{5 s} \sin{\left(e^{5 s} \right)} d s}}} = {\color{red}{\left(5 \int{e^{5 s} \sin{\left(e^{5 s} \right)} d s}\right)}}$$
Sia $$$u=5 s$$$.
Quindi $$$du=\left(5 s\right)^{\prime }ds = 5 ds$$$ (i passaggi si possono vedere »), e si ha che $$$ds = \frac{du}{5}$$$.
L'integrale può essere riscritto come
$$5 {\color{red}{\int{e^{5 s} \sin{\left(e^{5 s} \right)} d s}}} = 5 {\color{red}{\int{\frac{e^{u} \sin{\left(e^{u} \right)}}{5} d u}}}$$
Applica la regola del fattore costante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{5}$$$ e $$$f{\left(u \right)} = e^{u} \sin{\left(e^{u} \right)}$$$:
$$5 {\color{red}{\int{\frac{e^{u} \sin{\left(e^{u} \right)}}{5} d u}}} = 5 {\color{red}{\left(\frac{\int{e^{u} \sin{\left(e^{u} \right)} d u}}{5}\right)}}$$
Sia $$$v=e^{u}$$$.
Quindi $$$dv=\left(e^{u}\right)^{\prime }du = e^{u} du$$$ (i passaggi si possono vedere »), e si ha che $$$e^{u} du = dv$$$.
Quindi,
$${\color{red}{\int{e^{u} \sin{\left(e^{u} \right)} d u}}} = {\color{red}{\int{\sin{\left(v \right)} d v}}}$$
L'integrale del seno è $$$\int{\sin{\left(v \right)} d v} = - \cos{\left(v \right)}$$$:
$${\color{red}{\int{\sin{\left(v \right)} d v}}} = {\color{red}{\left(- \cos{\left(v \right)}\right)}}$$
Ricordiamo che $$$v=e^{u}$$$:
$$- \cos{\left({\color{red}{v}} \right)} = - \cos{\left({\color{red}{e^{u}}} \right)}$$
Ricordiamo che $$$u=5 s$$$:
$$- \cos{\left(e^{{\color{red}{u}}} \right)} = - \cos{\left(e^{{\color{red}{\left(5 s\right)}}} \right)}$$
Pertanto,
$$\int{5 e^{5 s} \sin{\left(e^{5 s} \right)} d s} = - \cos{\left(e^{5 s} \right)}$$
Aggiungi la costante di integrazione:
$$\int{5 e^{5 s} \sin{\left(e^{5 s} \right)} d s} = - \cos{\left(e^{5 s} \right)}+C$$
Risposta
$$$\int 5 e^{5 s} \sin{\left(e^{5 s} \right)}\, ds = - \cos{\left(e^{5 s} \right)} + C$$$A