Integrale di $$$28 x \sin{\left(3 \right)} \cos{\left(7 x \right)}$$$

La calcolatrice troverà l'integrale/primitiva di $$$28 x \sin{\left(3 \right)} \cos{\left(7 x \right)}$$$, mostrando i passaggi.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int 28 x \sin{\left(3 \right)} \cos{\left(7 x \right)}\, dx$$$.

Le funzioni trigonometriche si aspettano l'argomento in radianti. Per inserire l'argomento in gradi, moltiplicalo per pi/180, ad esempio scrivi 45° come 45*pi/180, oppure usa la funzione appropriata aggiungendo 'd', ad esempio scrivi sin(45°) come sind(45).

Soluzione

Applica la regola del fattore costante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=28 \sin{\left(3 \right)}$$$ e $$$f{\left(x \right)} = x \cos{\left(7 x \right)}$$$:

$${\color{red}{\int{28 x \sin{\left(3 \right)} \cos{\left(7 x \right)} d x}}} = {\color{red}{\left(28 \sin{\left(3 \right)} \int{x \cos{\left(7 x \right)} d x}\right)}}$$

Per l'integrale $$$\int{x \cos{\left(7 x \right)} d x}$$$, usa l'integrazione per parti $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Siano $$$\operatorname{u}=x$$$ e $$$\operatorname{dv}=\cos{\left(7 x \right)} dx$$$.

Quindi $$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$ (i passaggi si possono vedere ») e $$$\operatorname{v}=\int{\cos{\left(7 x \right)} d x}=\frac{\sin{\left(7 x \right)}}{7}$$$ (i passaggi si possono vedere »).

Pertanto,

$$28 \sin{\left(3 \right)} {\color{red}{\int{x \cos{\left(7 x \right)} d x}}}=28 \sin{\left(3 \right)} {\color{red}{\left(x \cdot \frac{\sin{\left(7 x \right)}}{7}-\int{\frac{\sin{\left(7 x \right)}}{7} \cdot 1 d x}\right)}}=28 \sin{\left(3 \right)} {\color{red}{\left(\frac{x \sin{\left(7 x \right)}}{7} - \int{\frac{\sin{\left(7 x \right)}}{7} d x}\right)}}$$

Applica la regola del fattore costante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\frac{1}{7}$$$ e $$$f{\left(x \right)} = \sin{\left(7 x \right)}$$$:

$$28 \sin{\left(3 \right)} \left(\frac{x \sin{\left(7 x \right)}}{7} - {\color{red}{\int{\frac{\sin{\left(7 x \right)}}{7} d x}}}\right) = 28 \sin{\left(3 \right)} \left(\frac{x \sin{\left(7 x \right)}}{7} - {\color{red}{\left(\frac{\int{\sin{\left(7 x \right)} d x}}{7}\right)}}\right)$$

Sia $$$u=7 x$$$.

Quindi $$$du=\left(7 x\right)^{\prime }dx = 7 dx$$$ (i passaggi si possono vedere »), e si ha che $$$dx = \frac{du}{7}$$$.

Quindi,

$$28 \sin{\left(3 \right)} \left(\frac{x \sin{\left(7 x \right)}}{7} - \frac{{\color{red}{\int{\sin{\left(7 x \right)} d x}}}}{7}\right) = 28 \sin{\left(3 \right)} \left(\frac{x \sin{\left(7 x \right)}}{7} - \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{7} d u}}}}{7}\right)$$

Applica la regola del fattore costante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{7}$$$ e $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:

$$28 \sin{\left(3 \right)} \left(\frac{x \sin{\left(7 x \right)}}{7} - \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{7} d u}}}}{7}\right) = 28 \sin{\left(3 \right)} \left(\frac{x \sin{\left(7 x \right)}}{7} - \frac{{\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{7}\right)}}}{7}\right)$$

L'integrale del seno è $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:

$$28 \sin{\left(3 \right)} \left(\frac{x \sin{\left(7 x \right)}}{7} - \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{49}\right) = 28 \sin{\left(3 \right)} \left(\frac{x \sin{\left(7 x \right)}}{7} - \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{49}\right)$$

Ricordiamo che $$$u=7 x$$$:

$$28 \sin{\left(3 \right)} \left(\frac{x \sin{\left(7 x \right)}}{7} + \frac{\cos{\left({\color{red}{u}} \right)}}{49}\right) = 28 \sin{\left(3 \right)} \left(\frac{x \sin{\left(7 x \right)}}{7} + \frac{\cos{\left({\color{red}{\left(7 x\right)}} \right)}}{49}\right)$$

Pertanto,

$$\int{28 x \sin{\left(3 \right)} \cos{\left(7 x \right)} d x} = 28 \left(\frac{x \sin{\left(7 x \right)}}{7} + \frac{\cos{\left(7 x \right)}}{49}\right) \sin{\left(3 \right)}$$

Semplifica:

$$\int{28 x \sin{\left(3 \right)} \cos{\left(7 x \right)} d x} = \frac{4 \left(7 x \sin{\left(7 x \right)} + \cos{\left(7 x \right)}\right) \sin{\left(3 \right)}}{7}$$

Aggiungi la costante di integrazione:

$$\int{28 x \sin{\left(3 \right)} \cos{\left(7 x \right)} d x} = \frac{4 \left(7 x \sin{\left(7 x \right)} + \cos{\left(7 x \right)}\right) \sin{\left(3 \right)}}{7}+C$$

Risposta

$$$\int 28 x \sin{\left(3 \right)} \cos{\left(7 x \right)}\, dx = \frac{4 \left(7 x \sin{\left(7 x \right)} + \cos{\left(7 x \right)}\right) \sin{\left(3 \right)}}{7} + C$$$A


Please try a new game Rotatly