Integrale di $$$3^{t}$$$
Calcolatore correlato: Calcolatore di integrali definiti e impropri
Il tuo input
Trova $$$\int 3^{t}\, dt$$$.
Soluzione
Apply the exponential rule $$$\int{a^{t} d t} = \frac{a^{t}}{\ln{\left(a \right)}}$$$ with $$$a=3$$$:
$${\color{red}{\int{3^{t} d t}}} = {\color{red}{\frac{3^{t}}{\ln{\left(3 \right)}}}}$$
Pertanto,
$$\int{3^{t} d t} = \frac{3^{t}}{\ln{\left(3 \right)}}$$
Aggiungi la costante di integrazione:
$$\int{3^{t} d t} = \frac{3^{t}}{\ln{\left(3 \right)}}+C$$
Risposta
$$$\int 3^{t}\, dt = \frac{3^{t}}{\ln\left(3\right)} + C$$$A
Please try a new game Rotatly