Integrale di $$$- 4 x + \frac{3}{x^{21}}$$$

La calcolatrice troverà l'integrale/primitiva di $$$- 4 x + \frac{3}{x^{21}}$$$, mostrando i passaggi.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int \left(- 4 x + \frac{3}{x^{21}}\right)\, dx$$$.

Soluzione

Integra termine per termine:

$${\color{red}{\int{\left(- 4 x + \frac{3}{x^{21}}\right)d x}}} = {\color{red}{\left(\int{\frac{3}{x^{21}} d x} - \int{4 x d x}\right)}}$$

Applica la regola del fattore costante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=4$$$ e $$$f{\left(x \right)} = x$$$:

$$\int{\frac{3}{x^{21}} d x} - {\color{red}{\int{4 x d x}}} = \int{\frac{3}{x^{21}} d x} - {\color{red}{\left(4 \int{x d x}\right)}}$$

Applica la regola della potenza $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=1$$$:

$$\int{\frac{3}{x^{21}} d x} - 4 {\color{red}{\int{x d x}}}=\int{\frac{3}{x^{21}} d x} - 4 {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=\int{\frac{3}{x^{21}} d x} - 4 {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$

Applica la regola del fattore costante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=3$$$ e $$$f{\left(x \right)} = \frac{1}{x^{21}}$$$:

$$- 2 x^{2} + {\color{red}{\int{\frac{3}{x^{21}} d x}}} = - 2 x^{2} + {\color{red}{\left(3 \int{\frac{1}{x^{21}} d x}\right)}}$$

Applica la regola della potenza $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=-21$$$:

$$- 2 x^{2} + 3 {\color{red}{\int{\frac{1}{x^{21}} d x}}}=- 2 x^{2} + 3 {\color{red}{\int{x^{-21} d x}}}=- 2 x^{2} + 3 {\color{red}{\frac{x^{-21 + 1}}{-21 + 1}}}=- 2 x^{2} + 3 {\color{red}{\left(- \frac{x^{-20}}{20}\right)}}=- 2 x^{2} + 3 {\color{red}{\left(- \frac{1}{20 x^{20}}\right)}}$$

Pertanto,

$$\int{\left(- 4 x + \frac{3}{x^{21}}\right)d x} = - 2 x^{2} - \frac{3}{20 x^{20}}$$

Semplifica:

$$\int{\left(- 4 x + \frac{3}{x^{21}}\right)d x} = \frac{- 40 x^{22} - 3}{20 x^{20}}$$

Aggiungi la costante di integrazione:

$$\int{\left(- 4 x + \frac{3}{x^{21}}\right)d x} = \frac{- 40 x^{22} - 3}{20 x^{20}}+C$$

Risposta

$$$\int \left(- 4 x + \frac{3}{x^{21}}\right)\, dx = \frac{- 40 x^{22} - 3}{20 x^{20}} + C$$$A


Please try a new game Rotatly