Integrale di $$$1 - \frac{x}{20}$$$
Calcolatore correlato: Calcolatore di integrali definiti e impropri
Il tuo input
Trova $$$\int \left(1 - \frac{x}{20}\right)\, dx$$$.
Soluzione
Integra termine per termine:
$${\color{red}{\int{\left(1 - \frac{x}{20}\right)d x}}} = {\color{red}{\left(\int{1 d x} - \int{\frac{x}{20} d x}\right)}}$$
Applica la regola della costante $$$\int c\, dx = c x$$$ con $$$c=1$$$:
$$- \int{\frac{x}{20} d x} + {\color{red}{\int{1 d x}}} = - \int{\frac{x}{20} d x} + {\color{red}{x}}$$
Applica la regola del fattore costante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\frac{1}{20}$$$ e $$$f{\left(x \right)} = x$$$:
$$x - {\color{red}{\int{\frac{x}{20} d x}}} = x - {\color{red}{\left(\frac{\int{x d x}}{20}\right)}}$$
Applica la regola della potenza $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=1$$$:
$$x - \frac{{\color{red}{\int{x d x}}}}{20}=x - \frac{{\color{red}{\frac{x^{1 + 1}}{1 + 1}}}}{20}=x - \frac{{\color{red}{\left(\frac{x^{2}}{2}\right)}}}{20}$$
Pertanto,
$$\int{\left(1 - \frac{x}{20}\right)d x} = - \frac{x^{2}}{40} + x$$
Semplifica:
$$\int{\left(1 - \frac{x}{20}\right)d x} = \frac{x \left(40 - x\right)}{40}$$
Aggiungi la costante di integrazione:
$$\int{\left(1 - \frac{x}{20}\right)d x} = \frac{x \left(40 - x\right)}{40}+C$$
Risposta
$$$\int \left(1 - \frac{x}{20}\right)\, dx = \frac{x \left(40 - x\right)}{40} + C$$$A