Integrale di $$$v^{2} - v$$$

La calcolatrice troverà l'integrale/primitiva di $$$v^{2} - v$$$, mostrando i passaggi.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int \left(v^{2} - v\right)\, dv$$$.

Soluzione

Integra termine per termine:

$${\color{red}{\int{\left(v^{2} - v\right)d v}}} = {\color{red}{\left(- \int{v d v} + \int{v^{2} d v}\right)}}$$

Applica la regola della potenza $$$\int v^{n}\, dv = \frac{v^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=2$$$:

$$- \int{v d v} + {\color{red}{\int{v^{2} d v}}}=- \int{v d v} + {\color{red}{\frac{v^{1 + 2}}{1 + 2}}}=- \int{v d v} + {\color{red}{\left(\frac{v^{3}}{3}\right)}}$$

Applica la regola della potenza $$$\int v^{n}\, dv = \frac{v^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=1$$$:

$$\frac{v^{3}}{3} - {\color{red}{\int{v d v}}}=\frac{v^{3}}{3} - {\color{red}{\frac{v^{1 + 1}}{1 + 1}}}=\frac{v^{3}}{3} - {\color{red}{\left(\frac{v^{2}}{2}\right)}}$$

Pertanto,

$$\int{\left(v^{2} - v\right)d v} = \frac{v^{3}}{3} - \frac{v^{2}}{2}$$

Semplifica:

$$\int{\left(v^{2} - v\right)d v} = \frac{v^{2} \left(2 v - 3\right)}{6}$$

Aggiungi la costante di integrazione:

$$\int{\left(v^{2} - v\right)d v} = \frac{v^{2} \left(2 v - 3\right)}{6}+C$$

Risposta

$$$\int \left(v^{2} - v\right)\, dv = \frac{v^{2} \left(2 v - 3\right)}{6} + C$$$A


Please try a new game Rotatly