Integrale di $$$1 - z^{3}$$$

La calcolatrice troverà l'integrale/primitiva di $$$1 - z^{3}$$$, mostrando i passaggi.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int \left(1 - z^{3}\right)\, dz$$$.

Soluzione

Integra termine per termine:

$${\color{red}{\int{\left(1 - z^{3}\right)d z}}} = {\color{red}{\left(\int{1 d z} - \int{z^{3} d z}\right)}}$$

Applica la regola della costante $$$\int c\, dz = c z$$$ con $$$c=1$$$:

$$- \int{z^{3} d z} + {\color{red}{\int{1 d z}}} = - \int{z^{3} d z} + {\color{red}{z}}$$

Applica la regola della potenza $$$\int z^{n}\, dz = \frac{z^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=3$$$:

$$z - {\color{red}{\int{z^{3} d z}}}=z - {\color{red}{\frac{z^{1 + 3}}{1 + 3}}}=z - {\color{red}{\left(\frac{z^{4}}{4}\right)}}$$

Pertanto,

$$\int{\left(1 - z^{3}\right)d z} = - \frac{z^{4}}{4} + z$$

Aggiungi la costante di integrazione:

$$\int{\left(1 - z^{3}\right)d z} = - \frac{z^{4}}{4} + z+C$$

Risposta

$$$\int \left(1 - z^{3}\right)\, dz = \left(- \frac{z^{4}}{4} + z\right) + C$$$A


Please try a new game Rotatly