Integrale di $$$\frac{3}{2 n}$$$
Calcolatore correlato: Calcolatore di integrali definiti e impropri
Il tuo input
Trova $$$\int \frac{3}{2 n}\, dn$$$.
Soluzione
Applica la regola del fattore costante $$$\int c f{\left(n \right)}\, dn = c \int f{\left(n \right)}\, dn$$$ con $$$c=\frac{3}{2}$$$ e $$$f{\left(n \right)} = \frac{1}{n}$$$:
$${\color{red}{\int{\frac{3}{2 n} d n}}} = {\color{red}{\left(\frac{3 \int{\frac{1}{n} d n}}{2}\right)}}$$
L'integrale di $$$\frac{1}{n}$$$ è $$$\int{\frac{1}{n} d n} = \ln{\left(\left|{n}\right| \right)}$$$:
$$\frac{3 {\color{red}{\int{\frac{1}{n} d n}}}}{2} = \frac{3 {\color{red}{\ln{\left(\left|{n}\right| \right)}}}}{2}$$
Pertanto,
$$\int{\frac{3}{2 n} d n} = \frac{3 \ln{\left(\left|{n}\right| \right)}}{2}$$
Aggiungi la costante di integrazione:
$$\int{\frac{3}{2 n} d n} = \frac{3 \ln{\left(\left|{n}\right| \right)}}{2}+C$$
Risposta
$$$\int \frac{3}{2 n}\, dn = \frac{3 \ln\left(\left|{n}\right|\right)}{2} + C$$$A