Integrale di $$$\sin^{2}{\left(x \right)} + 1$$$
Calcolatore correlato: Calcolatore di integrali definiti e impropri
Il tuo input
Trova $$$\int \left(\sin^{2}{\left(x \right)} + 1\right)\, dx$$$.
Soluzione
Integra termine per termine:
$${\color{red}{\int{\left(\sin^{2}{\left(x \right)} + 1\right)d x}}} = {\color{red}{\left(\int{1 d x} + \int{\sin^{2}{\left(x \right)} d x}\right)}}$$
Applica la regola della costante $$$\int c\, dx = c x$$$ con $$$c=1$$$:
$$\int{\sin^{2}{\left(x \right)} d x} + {\color{red}{\int{1 d x}}} = \int{\sin^{2}{\left(x \right)} d x} + {\color{red}{x}}$$
Applica la formula di riduzione della potenza per $$$\sin^{2}{\left(\alpha \right)} = \frac{1}{2} - \frac{\cos{\left(2 \alpha \right)}}{2}$$$ con $$$\alpha=x$$$:
$$x + {\color{red}{\int{\sin^{2}{\left(x \right)} d x}}} = x + {\color{red}{\int{\left(\frac{1}{2} - \frac{\cos{\left(2 x \right)}}{2}\right)d x}}}$$
Applica la regola del fattore costante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\frac{1}{2}$$$ e $$$f{\left(x \right)} = 1 - \cos{\left(2 x \right)}$$$:
$$x + {\color{red}{\int{\left(\frac{1}{2} - \frac{\cos{\left(2 x \right)}}{2}\right)d x}}} = x + {\color{red}{\left(\frac{\int{\left(1 - \cos{\left(2 x \right)}\right)d x}}{2}\right)}}$$
Integra termine per termine:
$$x + \frac{{\color{red}{\int{\left(1 - \cos{\left(2 x \right)}\right)d x}}}}{2} = x + \frac{{\color{red}{\left(\int{1 d x} - \int{\cos{\left(2 x \right)} d x}\right)}}}{2}$$
Applica la regola della costante $$$\int c\, dx = c x$$$ con $$$c=1$$$:
$$x - \frac{\int{\cos{\left(2 x \right)} d x}}{2} + \frac{{\color{red}{\int{1 d x}}}}{2} = x - \frac{\int{\cos{\left(2 x \right)} d x}}{2} + \frac{{\color{red}{x}}}{2}$$
Sia $$$u=2 x$$$.
Quindi $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (i passaggi si possono vedere »), e si ha che $$$dx = \frac{du}{2}$$$.
Quindi,
$$\frac{3 x}{2} - \frac{{\color{red}{\int{\cos{\left(2 x \right)} d x}}}}{2} = \frac{3 x}{2} - \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{2}$$
Applica la regola del fattore costante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{2}$$$ e $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:
$$\frac{3 x}{2} - \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{2} = \frac{3 x}{2} - \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{2}\right)}}}{2}$$
L'integrale del coseno è $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$\frac{3 x}{2} - \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{4} = \frac{3 x}{2} - \frac{{\color{red}{\sin{\left(u \right)}}}}{4}$$
Ricordiamo che $$$u=2 x$$$:
$$\frac{3 x}{2} - \frac{\sin{\left({\color{red}{u}} \right)}}{4} = \frac{3 x}{2} - \frac{\sin{\left({\color{red}{\left(2 x\right)}} \right)}}{4}$$
Pertanto,
$$\int{\left(\sin^{2}{\left(x \right)} + 1\right)d x} = \frac{3 x}{2} - \frac{\sin{\left(2 x \right)}}{4}$$
Semplifica:
$$\int{\left(\sin^{2}{\left(x \right)} + 1\right)d x} = \frac{6 x - \sin{\left(2 x \right)}}{4}$$
Aggiungi la costante di integrazione:
$$\int{\left(\sin^{2}{\left(x \right)} + 1\right)d x} = \frac{6 x - \sin{\left(2 x \right)}}{4}+C$$
Risposta
$$$\int \left(\sin^{2}{\left(x \right)} + 1\right)\, dx = \frac{6 x - \sin{\left(2 x \right)}}{4} + C$$$A