Integrale di $$$\frac{1}{\sin^{2}{\left(\frac{x}{3} \right)}}$$$

La calcolatrice troverà l'integrale/primitiva di $$$\frac{1}{\sin^{2}{\left(\frac{x}{3} \right)}}$$$, mostrando i passaggi.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int \frac{1}{\sin^{2}{\left(\frac{x}{3} \right)}}\, dx$$$.

Soluzione

Sia $$$u=\frac{x}{3}$$$.

Quindi $$$du=\left(\frac{x}{3}\right)^{\prime }dx = \frac{dx}{3}$$$ (i passaggi si possono vedere »), e si ha che $$$dx = 3 du$$$.

Quindi,

$${\color{red}{\int{\frac{1}{\sin^{2}{\left(\frac{x}{3} \right)}} d x}}} = {\color{red}{\int{\frac{3}{\sin^{2}{\left(u \right)}} d u}}}$$

Applica la regola del fattore costante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=3$$$ e $$$f{\left(u \right)} = \frac{1}{\sin^{2}{\left(u \right)}}$$$:

$${\color{red}{\int{\frac{3}{\sin^{2}{\left(u \right)}} d u}}} = {\color{red}{\left(3 \int{\frac{1}{\sin^{2}{\left(u \right)}} d u}\right)}}$$

Riesprimi l'integrando in termini della cosecante:

$$3 {\color{red}{\int{\frac{1}{\sin^{2}{\left(u \right)}} d u}}} = 3 {\color{red}{\int{\csc^{2}{\left(u \right)} d u}}}$$

L'integrale di $$$\csc^{2}{\left(u \right)}$$$ è $$$\int{\csc^{2}{\left(u \right)} d u} = - \cot{\left(u \right)}$$$:

$$3 {\color{red}{\int{\csc^{2}{\left(u \right)} d u}}} = 3 {\color{red}{\left(- \cot{\left(u \right)}\right)}}$$

Ricordiamo che $$$u=\frac{x}{3}$$$:

$$- 3 \cot{\left({\color{red}{u}} \right)} = - 3 \cot{\left({\color{red}{\left(\frac{x}{3}\right)}} \right)}$$

Pertanto,

$$\int{\frac{1}{\sin^{2}{\left(\frac{x}{3} \right)}} d x} = - 3 \cot{\left(\frac{x}{3} \right)}$$

Aggiungi la costante di integrazione:

$$\int{\frac{1}{\sin^{2}{\left(\frac{x}{3} \right)}} d x} = - 3 \cot{\left(\frac{x}{3} \right)}+C$$

Risposta

$$$\int \frac{1}{\sin^{2}{\left(\frac{x}{3} \right)}}\, dx = - 3 \cot{\left(\frac{x}{3} \right)} + C$$$A


Please try a new game Rotatly