Integrale di $$$\frac{1}{\left(g - 27\right)^{\frac{2}{3}}}$$$

La calcolatrice troverà l'integrale/primitiva di $$$\frac{1}{\left(g - 27\right)^{\frac{2}{3}}}$$$, mostrando i passaggi.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int \frac{1}{\left(g - 27\right)^{\frac{2}{3}}}\, dg$$$.

Soluzione

Sia $$$u=g - 27$$$.

Quindi $$$du=\left(g - 27\right)^{\prime }dg = 1 dg$$$ (i passaggi si possono vedere »), e si ha che $$$dg = du$$$.

Quindi,

$${\color{red}{\int{\frac{1}{\left(g - 27\right)^{\frac{2}{3}}} d g}}} = {\color{red}{\int{\frac{1}{u^{\frac{2}{3}}} d u}}}$$

Applica la regola della potenza $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=- \frac{2}{3}$$$:

$${\color{red}{\int{\frac{1}{u^{\frac{2}{3}}} d u}}}={\color{red}{\int{u^{- \frac{2}{3}} d u}}}={\color{red}{\frac{u^{- \frac{2}{3} + 1}}{- \frac{2}{3} + 1}}}={\color{red}{\left(3 u^{\frac{1}{3}}\right)}}={\color{red}{\left(3 \sqrt[3]{u}\right)}}$$

Ricordiamo che $$$u=g - 27$$$:

$$3 \sqrt[3]{{\color{red}{u}}} = 3 \sqrt[3]{{\color{red}{\left(g - 27\right)}}}$$

Pertanto,

$$\int{\frac{1}{\left(g - 27\right)^{\frac{2}{3}}} d g} = 3 \sqrt[3]{g - 27}$$

Aggiungi la costante di integrazione:

$$\int{\frac{1}{\left(g - 27\right)^{\frac{2}{3}}} d g} = 3 \sqrt[3]{g - 27}+C$$

Risposta

$$$\int \frac{1}{\left(g - 27\right)^{\frac{2}{3}}}\, dg = 3 \sqrt[3]{g - 27} + C$$$A


Please try a new game Rotatly