Integrale di $$$\frac{\sin{\left(2 x \right)}}{2}$$$
Calcolatore correlato: Calcolatore di integrali definiti e impropri
Il tuo input
Trova $$$\int \frac{\sin{\left(2 x \right)}}{2}\, dx$$$.
Soluzione
Applica la regola del fattore costante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\frac{1}{2}$$$ e $$$f{\left(x \right)} = \sin{\left(2 x \right)}$$$:
$${\color{red}{\int{\frac{\sin{\left(2 x \right)}}{2} d x}}} = {\color{red}{\left(\frac{\int{\sin{\left(2 x \right)} d x}}{2}\right)}}$$
Sia $$$u=2 x$$$.
Quindi $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (i passaggi si possono vedere »), e si ha che $$$dx = \frac{du}{2}$$$.
Quindi,
$$\frac{{\color{red}{\int{\sin{\left(2 x \right)} d x}}}}{2} = \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}}}{2}$$
Applica la regola del fattore costante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{2}$$$ e $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:
$$\frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}}}{2} = \frac{{\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{2}\right)}}}{2}$$
L'integrale del seno è $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$\frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{4} = \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{4}$$
Ricordiamo che $$$u=2 x$$$:
$$- \frac{\cos{\left({\color{red}{u}} \right)}}{4} = - \frac{\cos{\left({\color{red}{\left(2 x\right)}} \right)}}{4}$$
Pertanto,
$$\int{\frac{\sin{\left(2 x \right)}}{2} d x} = - \frac{\cos{\left(2 x \right)}}{4}$$
Aggiungi la costante di integrazione:
$$\int{\frac{\sin{\left(2 x \right)}}{2} d x} = - \frac{\cos{\left(2 x \right)}}{4}+C$$
Risposta
$$$\int \frac{\sin{\left(2 x \right)}}{2}\, dx = - \frac{\cos{\left(2 x \right)}}{4} + C$$$A