Integrale di $$$- 3 \cos{\left(\frac{x}{3} \right)}$$$
Calcolatore correlato: Calcolatore di integrali definiti e impropri
Il tuo input
Trova $$$\int \left(- 3 \cos{\left(\frac{x}{3} \right)}\right)\, dx$$$.
Soluzione
Applica la regola del fattore costante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=-3$$$ e $$$f{\left(x \right)} = \cos{\left(\frac{x}{3} \right)}$$$:
$${\color{red}{\int{\left(- 3 \cos{\left(\frac{x}{3} \right)}\right)d x}}} = {\color{red}{\left(- 3 \int{\cos{\left(\frac{x}{3} \right)} d x}\right)}}$$
Sia $$$u=\frac{x}{3}$$$.
Quindi $$$du=\left(\frac{x}{3}\right)^{\prime }dx = \frac{dx}{3}$$$ (i passaggi si possono vedere »), e si ha che $$$dx = 3 du$$$.
Pertanto,
$$- 3 {\color{red}{\int{\cos{\left(\frac{x}{3} \right)} d x}}} = - 3 {\color{red}{\int{3 \cos{\left(u \right)} d u}}}$$
Applica la regola del fattore costante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=3$$$ e $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:
$$- 3 {\color{red}{\int{3 \cos{\left(u \right)} d u}}} = - 3 {\color{red}{\left(3 \int{\cos{\left(u \right)} d u}\right)}}$$
L'integrale del coseno è $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$- 9 {\color{red}{\int{\cos{\left(u \right)} d u}}} = - 9 {\color{red}{\sin{\left(u \right)}}}$$
Ricordiamo che $$$u=\frac{x}{3}$$$:
$$- 9 \sin{\left({\color{red}{u}} \right)} = - 9 \sin{\left({\color{red}{\left(\frac{x}{3}\right)}} \right)}$$
Pertanto,
$$\int{\left(- 3 \cos{\left(\frac{x}{3} \right)}\right)d x} = - 9 \sin{\left(\frac{x}{3} \right)}$$
Aggiungi la costante di integrazione:
$$\int{\left(- 3 \cos{\left(\frac{x}{3} \right)}\right)d x} = - 9 \sin{\left(\frac{x}{3} \right)}+C$$
Risposta
$$$\int \left(- 3 \cos{\left(\frac{x}{3} \right)}\right)\, dx = - 9 \sin{\left(\frac{x}{3} \right)} + C$$$A