Integrale di $$$\frac{9}{10 x - 20}$$$

La calcolatrice troverà l'integrale/primitiva di $$$\frac{9}{10 x - 20}$$$, mostrando i passaggi.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int \frac{9}{10 x - 20}\, dx$$$.

Soluzione

Semplifica l’integranda:

$${\color{red}{\int{\frac{9}{10 x - 20} d x}}} = {\color{red}{\int{\frac{9}{10 \left(x - 2\right)} d x}}}$$

Applica la regola del fattore costante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\frac{9}{10}$$$ e $$$f{\left(x \right)} = \frac{1}{x - 2}$$$:

$${\color{red}{\int{\frac{9}{10 \left(x - 2\right)} d x}}} = {\color{red}{\left(\frac{9 \int{\frac{1}{x - 2} d x}}{10}\right)}}$$

Sia $$$u=x - 2$$$.

Quindi $$$du=\left(x - 2\right)^{\prime }dx = 1 dx$$$ (i passaggi si possono vedere »), e si ha che $$$dx = du$$$.

Quindi,

$$\frac{9 {\color{red}{\int{\frac{1}{x - 2} d x}}}}{10} = \frac{9 {\color{red}{\int{\frac{1}{u} d u}}}}{10}$$

L'integrale di $$$\frac{1}{u}$$$ è $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$\frac{9 {\color{red}{\int{\frac{1}{u} d u}}}}{10} = \frac{9 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{10}$$

Ricordiamo che $$$u=x - 2$$$:

$$\frac{9 \ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{10} = \frac{9 \ln{\left(\left|{{\color{red}{\left(x - 2\right)}}}\right| \right)}}{10}$$

Pertanto,

$$\int{\frac{9}{10 x - 20} d x} = \frac{9 \ln{\left(\left|{x - 2}\right| \right)}}{10}$$

Aggiungi la costante di integrazione:

$$\int{\frac{9}{10 x - 20} d x} = \frac{9 \ln{\left(\left|{x - 2}\right| \right)}}{10}+C$$

Risposta

$$$\int \frac{9}{10 x - 20}\, dx = \frac{9 \ln\left(\left|{x - 2}\right|\right)}{10} + C$$$A


Please try a new game Rotatly