Integrale di $$$\frac{x^{2} + 1}{x}$$$

La calcolatrice troverà l'integrale/primitiva di $$$\frac{x^{2} + 1}{x}$$$, mostrando i passaggi.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int \frac{x^{2} + 1}{x}\, dx$$$.

Soluzione

Expand the expression:

$${\color{red}{\int{\frac{x^{2} + 1}{x} d x}}} = {\color{red}{\int{\left(x + \frac{1}{x}\right)d x}}}$$

Integra termine per termine:

$${\color{red}{\int{\left(x + \frac{1}{x}\right)d x}}} = {\color{red}{\left(\int{\frac{1}{x} d x} + \int{x d x}\right)}}$$

Applica la regola della potenza $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=1$$$:

$$\int{\frac{1}{x} d x} + {\color{red}{\int{x d x}}}=\int{\frac{1}{x} d x} + {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=\int{\frac{1}{x} d x} + {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$

L'integrale di $$$\frac{1}{x}$$$ è $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$:

$$\frac{x^{2}}{2} + {\color{red}{\int{\frac{1}{x} d x}}} = \frac{x^{2}}{2} + {\color{red}{\ln{\left(\left|{x}\right| \right)}}}$$

Pertanto,

$$\int{\frac{x^{2} + 1}{x} d x} = \frac{x^{2}}{2} + \ln{\left(\left|{x}\right| \right)}$$

Aggiungi la costante di integrazione:

$$\int{\frac{x^{2} + 1}{x} d x} = \frac{x^{2}}{2} + \ln{\left(\left|{x}\right| \right)}+C$$

Risposta

$$$\int \frac{x^{2} + 1}{x}\, dx = \left(\frac{x^{2}}{2} + \ln\left(\left|{x}\right|\right)\right) + C$$$A


Please try a new game Rotatly