Integrale di $$$\frac{\tan^{2}{\left(x \right)}}{2}$$$

La calcolatrice troverà l'integrale/primitiva di $$$\frac{\tan^{2}{\left(x \right)}}{2}$$$, mostrando i passaggi.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int \frac{\tan^{2}{\left(x \right)}}{2}\, dx$$$.

Soluzione

Applica la regola del fattore costante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\frac{1}{2}$$$ e $$$f{\left(x \right)} = \tan^{2}{\left(x \right)}$$$:

$${\color{red}{\int{\frac{\tan^{2}{\left(x \right)}}{2} d x}}} = {\color{red}{\left(\frac{\int{\tan^{2}{\left(x \right)} d x}}{2}\right)}}$$

Sia $$$u=\tan{\left(x \right)}$$$.

Quindi $$$x=\operatorname{atan}{\left(u \right)}$$$ e $$$dx=\left(\operatorname{atan}{\left(u \right)}\right)^{\prime }du = \frac{du}{u^{2} + 1}$$$ (i passaggi possono essere visti »).

Quindi,

$$\frac{{\color{red}{\int{\tan^{2}{\left(x \right)} d x}}}}{2} = \frac{{\color{red}{\int{\frac{u^{2}}{u^{2} + 1} d u}}}}{2}$$

Riscrivi e separa la frazione:

$$\frac{{\color{red}{\int{\frac{u^{2}}{u^{2} + 1} d u}}}}{2} = \frac{{\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}}}{2}$$

Integra termine per termine:

$$\frac{{\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}}}{2} = \frac{{\color{red}{\left(\int{1 d u} - \int{\frac{1}{u^{2} + 1} d u}\right)}}}{2}$$

Applica la regola della costante $$$\int c\, du = c u$$$ con $$$c=1$$$:

$$- \frac{\int{\frac{1}{u^{2} + 1} d u}}{2} + \frac{{\color{red}{\int{1 d u}}}}{2} = - \frac{\int{\frac{1}{u^{2} + 1} d u}}{2} + \frac{{\color{red}{u}}}{2}$$

L'integrale di $$$\frac{1}{u^{2} + 1}$$$ è $$$\int{\frac{1}{u^{2} + 1} d u} = \operatorname{atan}{\left(u \right)}$$$:

$$\frac{u}{2} - \frac{{\color{red}{\int{\frac{1}{u^{2} + 1} d u}}}}{2} = \frac{u}{2} - \frac{{\color{red}{\operatorname{atan}{\left(u \right)}}}}{2}$$

Ricordiamo che $$$u=\tan{\left(x \right)}$$$:

$$- \frac{\operatorname{atan}{\left({\color{red}{u}} \right)}}{2} + \frac{{\color{red}{u}}}{2} = - \frac{\operatorname{atan}{\left({\color{red}{\tan{\left(x \right)}}} \right)}}{2} + \frac{{\color{red}{\tan{\left(x \right)}}}}{2}$$

Pertanto,

$$\int{\frac{\tan^{2}{\left(x \right)}}{2} d x} = \frac{\tan{\left(x \right)}}{2} - \frac{\operatorname{atan}{\left(\tan{\left(x \right)} \right)}}{2}$$

Semplifica:

$$\int{\frac{\tan^{2}{\left(x \right)}}{2} d x} = - \frac{x}{2} + \frac{\tan{\left(x \right)}}{2}$$

Aggiungi la costante di integrazione:

$$\int{\frac{\tan^{2}{\left(x \right)}}{2} d x} = - \frac{x}{2} + \frac{\tan{\left(x \right)}}{2}+C$$

Risposta

$$$\int \frac{\tan^{2}{\left(x \right)}}{2}\, dx = \left(- \frac{x}{2} + \frac{\tan{\left(x \right)}}{2}\right) + C$$$A


Please try a new game Rotatly