Integrale di $$$\frac{1}{x^{4} y^{3}}$$$ rispetto a $$$x$$$

Il calcolatore troverà l'integrale/antiderivata di $$$\frac{1}{x^{4} y^{3}}$$$ rispetto a $$$x$$$, con i passaggi mostrati.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int \frac{1}{x^{4} y^{3}}\, dx$$$.

Soluzione

Applica la regola del fattore costante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\frac{1}{y^{3}}$$$ e $$$f{\left(x \right)} = \frac{1}{x^{4}}$$$:

$${\color{red}{\int{\frac{1}{x^{4} y^{3}} d x}}} = {\color{red}{\frac{\int{\frac{1}{x^{4}} d x}}{y^{3}}}}$$

Applica la regola della potenza $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=-4$$$:

$$\frac{{\color{red}{\int{\frac{1}{x^{4}} d x}}}}{y^{3}}=\frac{{\color{red}{\int{x^{-4} d x}}}}{y^{3}}=\frac{{\color{red}{\frac{x^{-4 + 1}}{-4 + 1}}}}{y^{3}}=\frac{{\color{red}{\left(- \frac{x^{-3}}{3}\right)}}}{y^{3}}=\frac{{\color{red}{\left(- \frac{1}{3 x^{3}}\right)}}}{y^{3}}$$

Pertanto,

$$\int{\frac{1}{x^{4} y^{3}} d x} = - \frac{1}{3 x^{3} y^{3}}$$

Aggiungi la costante di integrazione:

$$\int{\frac{1}{x^{4} y^{3}} d x} = - \frac{1}{3 x^{3} y^{3}}+C$$

Risposta

$$$\int \frac{1}{x^{4} y^{3}}\, dx = - \frac{1}{3 x^{3} y^{3}} + C$$$A


Please try a new game Rotatly