Integrale di $$$\frac{1}{2 \sqrt{1 - x^{2}}}$$$

La calcolatrice troverà l'integrale/primitiva di $$$\frac{1}{2 \sqrt{1 - x^{2}}}$$$, mostrando i passaggi.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int \frac{1}{2 \sqrt{1 - x^{2}}}\, dx$$$.

Soluzione

Applica la regola del fattore costante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\frac{1}{2}$$$ e $$$f{\left(x \right)} = \frac{1}{\sqrt{1 - x^{2}}}$$$:

$${\color{red}{\int{\frac{1}{2 \sqrt{1 - x^{2}}} d x}}} = {\color{red}{\left(\frac{\int{\frac{1}{\sqrt{1 - x^{2}}} d x}}{2}\right)}}$$

L'integrale di $$$\frac{1}{\sqrt{1 - x^{2}}}$$$ è $$$\int{\frac{1}{\sqrt{1 - x^{2}}} d x} = \operatorname{asin}{\left(x \right)}$$$:

$$\frac{{\color{red}{\int{\frac{1}{\sqrt{1 - x^{2}}} d x}}}}{2} = \frac{{\color{red}{\operatorname{asin}{\left(x \right)}}}}{2}$$

Pertanto,

$$\int{\frac{1}{2 \sqrt{1 - x^{2}}} d x} = \frac{\operatorname{asin}{\left(x \right)}}{2}$$

Aggiungi la costante di integrazione:

$$\int{\frac{1}{2 \sqrt{1 - x^{2}}} d x} = \frac{\operatorname{asin}{\left(x \right)}}{2}+C$$

Risposta

$$$\int \frac{1}{2 \sqrt{1 - x^{2}}}\, dx = \frac{\operatorname{asin}{\left(x \right)}}{2} + C$$$A


Please try a new game Rotatly