Integrale di $$$\frac{1}{2 \sqrt{1 - x^{2}}}$$$
Calcolatore correlato: Calcolatore di integrali definiti e impropri
Il tuo input
Trova $$$\int \frac{1}{2 \sqrt{1 - x^{2}}}\, dx$$$.
Soluzione
Applica la regola del fattore costante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\frac{1}{2}$$$ e $$$f{\left(x \right)} = \frac{1}{\sqrt{1 - x^{2}}}$$$:
$${\color{red}{\int{\frac{1}{2 \sqrt{1 - x^{2}}} d x}}} = {\color{red}{\left(\frac{\int{\frac{1}{\sqrt{1 - x^{2}}} d x}}{2}\right)}}$$
L'integrale di $$$\frac{1}{\sqrt{1 - x^{2}}}$$$ è $$$\int{\frac{1}{\sqrt{1 - x^{2}}} d x} = \operatorname{asin}{\left(x \right)}$$$:
$$\frac{{\color{red}{\int{\frac{1}{\sqrt{1 - x^{2}}} d x}}}}{2} = \frac{{\color{red}{\operatorname{asin}{\left(x \right)}}}}{2}$$
Pertanto,
$$\int{\frac{1}{2 \sqrt{1 - x^{2}}} d x} = \frac{\operatorname{asin}{\left(x \right)}}{2}$$
Aggiungi la costante di integrazione:
$$\int{\frac{1}{2 \sqrt{1 - x^{2}}} d x} = \frac{\operatorname{asin}{\left(x \right)}}{2}+C$$
Risposta
$$$\int \frac{1}{2 \sqrt{1 - x^{2}}}\, dx = \frac{\operatorname{asin}{\left(x \right)}}{2} + C$$$A