Integrale di $$$\frac{1}{\sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)}}$$$

La calcolatrice troverà l'integrale/primitiva di $$$\frac{1}{\sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)}}$$$, mostrando i passaggi.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int \frac{1}{\sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)}}\, dx$$$.

Soluzione

Moltiplica il numeratore e il denominatore per $$$\frac{1}{\cos^{2}{\left(x \right)}}$$$ e converti $$$\frac{\cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)}}$$$ in $$$\frac{1}{\tan^{2}{\left(x \right)}}$$$:

$${\color{red}{\int{\frac{1}{\sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{1}{\cos^{4}{\left(x \right)} \tan^{2}{\left(x \right)}} d x}}}$$

Isola due coseni e riscrivili in termini della secante usando la formula $$$\frac{1}{\cos^{2}{\left(x \right)}}=\sec^{2}{\left(x \right)}$$$:

$${\color{red}{\int{\frac{1}{\cos^{4}{\left(x \right)} \tan^{2}{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{\sec^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)} \tan^{2}{\left(x \right)}} d x}}}$$

Riescrivi il coseno in funzione della tangente usando la formula $$$\cos^{2}{\left(x \right)}=\frac{1}{\tan^{2}{\left(x \right)} + 1}$$$:

$${\color{red}{\int{\frac{\sec^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)} \tan^{2}{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{\left(\tan^{2}{\left(x \right)} + 1\right) \sec^{2}{\left(x \right)}}{\tan^{2}{\left(x \right)}} d x}}}$$

Sia $$$u=\tan{\left(x \right)}$$$.

Quindi $$$du=\left(\tan{\left(x \right)}\right)^{\prime }dx = \sec^{2}{\left(x \right)} dx$$$ (i passaggi si possono vedere »), e si ha che $$$\sec^{2}{\left(x \right)} dx = du$$$.

L'integrale può essere riscritto come

$${\color{red}{\int{\frac{\left(\tan^{2}{\left(x \right)} + 1\right) \sec^{2}{\left(x \right)}}{\tan^{2}{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{u^{2} + 1}{u^{2}} d u}}}$$

Expand the expression:

$${\color{red}{\int{\frac{u^{2} + 1}{u^{2}} d u}}} = {\color{red}{\int{\left(1 + \frac{1}{u^{2}}\right)d u}}}$$

Integra termine per termine:

$${\color{red}{\int{\left(1 + \frac{1}{u^{2}}\right)d u}}} = {\color{red}{\left(\int{1 d u} + \int{\frac{1}{u^{2}} d u}\right)}}$$

Applica la regola della costante $$$\int c\, du = c u$$$ con $$$c=1$$$:

$$\int{\frac{1}{u^{2}} d u} + {\color{red}{\int{1 d u}}} = \int{\frac{1}{u^{2}} d u} + {\color{red}{u}}$$

Applica la regola della potenza $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=-2$$$:

$$u + {\color{red}{\int{\frac{1}{u^{2}} d u}}}=u + {\color{red}{\int{u^{-2} d u}}}=u + {\color{red}{\frac{u^{-2 + 1}}{-2 + 1}}}=u + {\color{red}{\left(- u^{-1}\right)}}=u + {\color{red}{\left(- \frac{1}{u}\right)}}$$

Ricordiamo che $$$u=\tan{\left(x \right)}$$$:

$$- {\color{red}{u}}^{-1} + {\color{red}{u}} = - {\color{red}{\tan{\left(x \right)}}}^{-1} + {\color{red}{\tan{\left(x \right)}}}$$

Pertanto,

$$\int{\frac{1}{\sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)}} d x} = \tan{\left(x \right)} - \frac{1}{\tan{\left(x \right)}}$$

Aggiungi la costante di integrazione:

$$\int{\frac{1}{\sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)}} d x} = \tan{\left(x \right)} - \frac{1}{\tan{\left(x \right)}}+C$$

Risposta

$$$\int \frac{1}{\sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)}}\, dx = \left(\tan{\left(x \right)} - \frac{1}{\tan{\left(x \right)}}\right) + C$$$A


Please try a new game Rotatly