Integrale di $$$\frac{\sqrt{3} \cos{\left(\sqrt{3} \sqrt{t} \right)}}{3 \sqrt{t}}$$$

La calcolatrice troverà l'integrale/primitiva di $$$\frac{\sqrt{3} \cos{\left(\sqrt{3} \sqrt{t} \right)}}{3 \sqrt{t}}$$$, mostrando i passaggi.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int \frac{\sqrt{3} \cos{\left(\sqrt{3} \sqrt{t} \right)}}{3 \sqrt{t}}\, dt$$$.

Soluzione

Applica la regola del fattore costante $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ con $$$c=\frac{\sqrt{3}}{3}$$$ e $$$f{\left(t \right)} = \frac{\cos{\left(\sqrt{3} \sqrt{t} \right)}}{\sqrt{t}}$$$:

$${\color{red}{\int{\frac{\sqrt{3} \cos{\left(\sqrt{3} \sqrt{t} \right)}}{3 \sqrt{t}} d t}}} = {\color{red}{\left(\frac{\sqrt{3} \int{\frac{\cos{\left(\sqrt{3} \sqrt{t} \right)}}{\sqrt{t}} d t}}{3}\right)}}$$

Sia $$$u=\sqrt{3} \sqrt{t}$$$.

Quindi $$$du=\left(\sqrt{3} \sqrt{t}\right)^{\prime }dt = \frac{\sqrt{3}}{2 \sqrt{t}} dt$$$ (i passaggi si possono vedere »), e si ha che $$$\frac{dt}{\sqrt{t}} = \frac{2 \sqrt{3} du}{3}$$$.

Quindi,

$$\frac{\sqrt{3} {\color{red}{\int{\frac{\cos{\left(\sqrt{3} \sqrt{t} \right)}}{\sqrt{t}} d t}}}}{3} = \frac{\sqrt{3} {\color{red}{\int{\frac{2 \sqrt{3} \cos{\left(u \right)}}{3} d u}}}}{3}$$

Applica la regola del fattore costante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{2 \sqrt{3}}{3}$$$ e $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:

$$\frac{\sqrt{3} {\color{red}{\int{\frac{2 \sqrt{3} \cos{\left(u \right)}}{3} d u}}}}{3} = \frac{\sqrt{3} {\color{red}{\left(\frac{2 \sqrt{3} \int{\cos{\left(u \right)} d u}}{3}\right)}}}{3}$$

L'integrale del coseno è $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:

$$\frac{2 {\color{red}{\int{\cos{\left(u \right)} d u}}}}{3} = \frac{2 {\color{red}{\sin{\left(u \right)}}}}{3}$$

Ricordiamo che $$$u=\sqrt{3} \sqrt{t}$$$:

$$\frac{2 \sin{\left({\color{red}{u}} \right)}}{3} = \frac{2 \sin{\left({\color{red}{\sqrt{3} \sqrt{t}}} \right)}}{3}$$

Pertanto,

$$\int{\frac{\sqrt{3} \cos{\left(\sqrt{3} \sqrt{t} \right)}}{3 \sqrt{t}} d t} = \frac{2 \sin{\left(\sqrt{3} \sqrt{t} \right)}}{3}$$

Aggiungi la costante di integrazione:

$$\int{\frac{\sqrt{3} \cos{\left(\sqrt{3} \sqrt{t} \right)}}{3 \sqrt{t}} d t} = \frac{2 \sin{\left(\sqrt{3} \sqrt{t} \right)}}{3}+C$$

Risposta

$$$\int \frac{\sqrt{3} \cos{\left(\sqrt{3} \sqrt{t} \right)}}{3 \sqrt{t}}\, dt = \frac{2 \sin{\left(\sqrt{3} \sqrt{t} \right)}}{3} + C$$$A


Please try a new game Rotatly