Integrale di $$$\frac{\sin{\left(\sqrt{x} \right)}}{\sqrt{x}}$$$
Calcolatore correlato: Calcolatore di integrali definiti e impropri
Il tuo input
Trova $$$\int \frac{\sin{\left(\sqrt{x} \right)}}{\sqrt{x}}\, dx$$$.
Soluzione
Sia $$$u=\sqrt{x}$$$.
Quindi $$$du=\left(\sqrt{x}\right)^{\prime }dx = \frac{1}{2 \sqrt{x}} dx$$$ (i passaggi si possono vedere »), e si ha che $$$\frac{dx}{\sqrt{x}} = 2 du$$$.
L'integrale diventa
$${\color{red}{\int{\frac{\sin{\left(\sqrt{x} \right)}}{\sqrt{x}} d x}}} = {\color{red}{\int{2 \sin{\left(u \right)} d u}}}$$
Applica la regola del fattore costante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=2$$$ e $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:
$${\color{red}{\int{2 \sin{\left(u \right)} d u}}} = {\color{red}{\left(2 \int{\sin{\left(u \right)} d u}\right)}}$$
L'integrale del seno è $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$2 {\color{red}{\int{\sin{\left(u \right)} d u}}} = 2 {\color{red}{\left(- \cos{\left(u \right)}\right)}}$$
Ricordiamo che $$$u=\sqrt{x}$$$:
$$- 2 \cos{\left({\color{red}{u}} \right)} = - 2 \cos{\left({\color{red}{\sqrt{x}}} \right)}$$
Pertanto,
$$\int{\frac{\sin{\left(\sqrt{x} \right)}}{\sqrt{x}} d x} = - 2 \cos{\left(\sqrt{x} \right)}$$
Aggiungi la costante di integrazione:
$$\int{\frac{\sin{\left(\sqrt{x} \right)}}{\sqrt{x}} d x} = - 2 \cos{\left(\sqrt{x} \right)}+C$$
Risposta
$$$\int \frac{\sin{\left(\sqrt{x} \right)}}{\sqrt{x}}\, dx = - 2 \cos{\left(\sqrt{x} \right)} + C$$$A