Integrale di $$$x \left(2 x^{2} - 3\right) e^{3}$$$
Calcolatore correlato: Calcolatore di integrali definiti e impropri
Il tuo input
Trova $$$\int x \left(2 x^{2} - 3\right) e^{3}\, dx$$$.
Soluzione
Sia $$$u=2 x^{2} - 3$$$.
Quindi $$$du=\left(2 x^{2} - 3\right)^{\prime }dx = 4 x dx$$$ (i passaggi si possono vedere »), e si ha che $$$x dx = \frac{du}{4}$$$.
L'integrale può essere riscritto come
$${\color{red}{\int{x \left(2 x^{2} - 3\right) e^{3} d x}}} = {\color{red}{\int{\frac{u e^{3}}{4} d u}}}$$
Applica la regola del fattore costante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{e^{3}}{4}$$$ e $$$f{\left(u \right)} = u$$$:
$${\color{red}{\int{\frac{u e^{3}}{4} d u}}} = {\color{red}{\left(\frac{e^{3} \int{u d u}}{4}\right)}}$$
Applica la regola della potenza $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=1$$$:
$$\frac{e^{3} {\color{red}{\int{u d u}}}}{4}=\frac{e^{3} {\color{red}{\frac{u^{1 + 1}}{1 + 1}}}}{4}=\frac{e^{3} {\color{red}{\left(\frac{u^{2}}{2}\right)}}}{4}$$
Ricordiamo che $$$u=2 x^{2} - 3$$$:
$$\frac{e^{3} {\color{red}{u}}^{2}}{8} = \frac{e^{3} {\color{red}{\left(2 x^{2} - 3\right)}}^{2}}{8}$$
Pertanto,
$$\int{x \left(2 x^{2} - 3\right) e^{3} d x} = \frac{\left(2 x^{2} - 3\right)^{2} e^{3}}{8}$$
Aggiungi la costante di integrazione:
$$\int{x \left(2 x^{2} - 3\right) e^{3} d x} = \frac{\left(2 x^{2} - 3\right)^{2} e^{3}}{8}+C$$
Risposta
$$$\int x \left(2 x^{2} - 3\right) e^{3}\, dx = \frac{\left(2 x^{2} - 3\right)^{2} e^{3}}{8} + C$$$A