Integrale di $$$\frac{\theta e^{2}}{2}$$$

La calcolatrice troverà l'integrale/primitiva di $$$\frac{\theta e^{2}}{2}$$$, mostrando i passaggi.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int \frac{\theta e^{2}}{2}\, d\theta$$$.

Soluzione

Applica la regola del fattore costante $$$\int c f{\left(\theta \right)}\, d\theta = c \int f{\left(\theta \right)}\, d\theta$$$ con $$$c=\frac{e^{2}}{2}$$$ e $$$f{\left(\theta \right)} = \theta$$$:

$${\color{red}{\int{\frac{\theta e^{2}}{2} d \theta}}} = {\color{red}{\left(\frac{e^{2} \int{\theta d \theta}}{2}\right)}}$$

Applica la regola della potenza $$$\int \theta^{n}\, d\theta = \frac{\theta^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=1$$$:

$$\frac{e^{2} {\color{red}{\int{\theta d \theta}}}}{2}=\frac{e^{2} {\color{red}{\frac{\theta^{1 + 1}}{1 + 1}}}}{2}=\frac{e^{2} {\color{red}{\left(\frac{\theta^{2}}{2}\right)}}}{2}$$

Pertanto,

$$\int{\frac{\theta e^{2}}{2} d \theta} = \frac{\theta^{2} e^{2}}{4}$$

Aggiungi la costante di integrazione:

$$\int{\frac{\theta e^{2}}{2} d \theta} = \frac{\theta^{2} e^{2}}{4}+C$$

Risposta

$$$\int \frac{\theta e^{2}}{2}\, d\theta = \frac{\theta^{2} e^{2}}{4} + C$$$A


Please try a new game Rotatly