Integrale di $$$\left(4 x - 2\right) e^{x^{2} - x}$$$

La calcolatrice troverà l'integrale/primitiva di $$$\left(4 x - 2\right) e^{x^{2} - x}$$$, mostrando i passaggi.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int \left(4 x - 2\right) e^{x^{2} - x}\, dx$$$.

Soluzione

L'input viene riscritto: $$$\int{\left(4 x - 2\right) e^{x^{2} - x} d x}=\int{\left(4 x - 2\right) e^{x \left(x - 1\right)} d x}$$$.

Sia $$$u=x \left(x - 1\right)$$$.

Quindi $$$du=\left(x \left(x - 1\right)\right)^{\prime }dx = \left(2 x - 1\right) dx$$$ (i passaggi si possono vedere »), e si ha che $$$\left(2 x - 1\right) dx = du$$$.

Quindi,

$${\color{red}{\int{\left(4 x - 2\right) e^{x \left(x - 1\right)} d x}}} = {\color{red}{\int{2 e^{u} d u}}}$$

Applica la regola del fattore costante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=2$$$ e $$$f{\left(u \right)} = e^{u}$$$:

$${\color{red}{\int{2 e^{u} d u}}} = {\color{red}{\left(2 \int{e^{u} d u}\right)}}$$

L'integrale della funzione esponenziale è $$$\int{e^{u} d u} = e^{u}$$$:

$$2 {\color{red}{\int{e^{u} d u}}} = 2 {\color{red}{e^{u}}}$$

Ricordiamo che $$$u=x \left(x - 1\right)$$$:

$$2 e^{{\color{red}{u}}} = 2 e^{{\color{red}{x \left(x - 1\right)}}}$$

Pertanto,

$$\int{\left(4 x - 2\right) e^{x \left(x - 1\right)} d x} = 2 e^{x \left(x - 1\right)}$$

Aggiungi la costante di integrazione:

$$\int{\left(4 x - 2\right) e^{x \left(x - 1\right)} d x} = 2 e^{x \left(x - 1\right)}+C$$

Risposta

$$$\int \left(4 x - 2\right) e^{x^{2} - x}\, dx = 2 e^{x \left(x - 1\right)} + C$$$A


Please try a new game Rotatly