Integrale di $$$e^{- 6 w} \sin{\left(2 w \right)}$$$

La calcolatrice troverà l'integrale/primitiva di $$$e^{- 6 w} \sin{\left(2 w \right)}$$$, mostrando i passaggi.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int e^{- 6 w} \sin{\left(2 w \right)}\, dw$$$.

Soluzione

Per l'integrale $$$\int{e^{- 6 w} \sin{\left(2 w \right)} d w}$$$, usa l'integrazione per parti $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Siano $$$\operatorname{u}=\sin{\left(2 w \right)}$$$ e $$$\operatorname{dv}=e^{- 6 w} dw$$$.

Quindi $$$\operatorname{du}=\left(\sin{\left(2 w \right)}\right)^{\prime }dw=2 \cos{\left(2 w \right)} dw$$$ (i passaggi si possono vedere ») e $$$\operatorname{v}=\int{e^{- 6 w} d w}=- \frac{e^{- 6 w}}{6}$$$ (i passaggi si possono vedere »).

Pertanto,

$${\color{red}{\int{e^{- 6 w} \sin{\left(2 w \right)} d w}}}={\color{red}{\left(\sin{\left(2 w \right)} \cdot \left(- \frac{e^{- 6 w}}{6}\right)-\int{\left(- \frac{e^{- 6 w}}{6}\right) \cdot 2 \cos{\left(2 w \right)} d w}\right)}}={\color{red}{\left(- \int{\left(- \frac{e^{- 6 w} \cos{\left(2 w \right)}}{3}\right)d w} - \frac{e^{- 6 w} \sin{\left(2 w \right)}}{6}\right)}}$$

Applica la regola del fattore costante $$$\int c f{\left(w \right)}\, dw = c \int f{\left(w \right)}\, dw$$$ con $$$c=- \frac{1}{3}$$$ e $$$f{\left(w \right)} = e^{- 6 w} \cos{\left(2 w \right)}$$$:

$$- {\color{red}{\int{\left(- \frac{e^{- 6 w} \cos{\left(2 w \right)}}{3}\right)d w}}} - \frac{e^{- 6 w} \sin{\left(2 w \right)}}{6} = - {\color{red}{\left(- \frac{\int{e^{- 6 w} \cos{\left(2 w \right)} d w}}{3}\right)}} - \frac{e^{- 6 w} \sin{\left(2 w \right)}}{6}$$

Per l'integrale $$$\int{e^{- 6 w} \cos{\left(2 w \right)} d w}$$$, usa l'integrazione per parti $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Siano $$$\operatorname{u}=\cos{\left(2 w \right)}$$$ e $$$\operatorname{dv}=e^{- 6 w} dw$$$.

Quindi $$$\operatorname{du}=\left(\cos{\left(2 w \right)}\right)^{\prime }dw=- 2 \sin{\left(2 w \right)} dw$$$ (i passaggi si possono vedere ») e $$$\operatorname{v}=\int{e^{- 6 w} d w}=- \frac{e^{- 6 w}}{6}$$$ (i passaggi si possono vedere »).

L'integrale può essere riscritto come

$$\frac{{\color{red}{\int{e^{- 6 w} \cos{\left(2 w \right)} d w}}}}{3} - \frac{e^{- 6 w} \sin{\left(2 w \right)}}{6}=\frac{{\color{red}{\left(\cos{\left(2 w \right)} \cdot \left(- \frac{e^{- 6 w}}{6}\right)-\int{\left(- \frac{e^{- 6 w}}{6}\right) \cdot \left(- 2 \sin{\left(2 w \right)}\right) d w}\right)}}}{3} - \frac{e^{- 6 w} \sin{\left(2 w \right)}}{6}=\frac{{\color{red}{\left(- \int{\frac{e^{- 6 w} \sin{\left(2 w \right)}}{3} d w} - \frac{e^{- 6 w} \cos{\left(2 w \right)}}{6}\right)}}}{3} - \frac{e^{- 6 w} \sin{\left(2 w \right)}}{6}$$

Applica la regola del fattore costante $$$\int c f{\left(w \right)}\, dw = c \int f{\left(w \right)}\, dw$$$ con $$$c=\frac{1}{3}$$$ e $$$f{\left(w \right)} = e^{- 6 w} \sin{\left(2 w \right)}$$$:

$$- \frac{{\color{red}{\int{\frac{e^{- 6 w} \sin{\left(2 w \right)}}{3} d w}}}}{3} - \frac{e^{- 6 w} \sin{\left(2 w \right)}}{6} - \frac{e^{- 6 w} \cos{\left(2 w \right)}}{18} = - \frac{{\color{red}{\left(\frac{\int{e^{- 6 w} \sin{\left(2 w \right)} d w}}{3}\right)}}}{3} - \frac{e^{- 6 w} \sin{\left(2 w \right)}}{6} - \frac{e^{- 6 w} \cos{\left(2 w \right)}}{18}$$

Siamo arrivati a un integrale che abbiamo già visto.

Pertanto, abbiamo ottenuto la seguente semplice equazione in termini dell’integrale:

$$\int{e^{- 6 w} \sin{\left(2 w \right)} d w} = - \frac{\int{e^{- 6 w} \sin{\left(2 w \right)} d w}}{9} - \frac{e^{- 6 w} \sin{\left(2 w \right)}}{6} - \frac{e^{- 6 w} \cos{\left(2 w \right)}}{18}$$

Risolvendo, otteniamo che

$$\int{e^{- 6 w} \sin{\left(2 w \right)} d w} = \frac{\left(- 3 \sin{\left(2 w \right)} - \cos{\left(2 w \right)}\right) e^{- 6 w}}{20}$$

Pertanto,

$$\int{e^{- 6 w} \sin{\left(2 w \right)} d w} = \frac{\left(- 3 \sin{\left(2 w \right)} - \cos{\left(2 w \right)}\right) e^{- 6 w}}{20}$$

Aggiungi la costante di integrazione:

$$\int{e^{- 6 w} \sin{\left(2 w \right)} d w} = \frac{\left(- 3 \sin{\left(2 w \right)} - \cos{\left(2 w \right)}\right) e^{- 6 w}}{20}+C$$

Risposta

$$$\int e^{- 6 w} \sin{\left(2 w \right)}\, dw = \frac{\left(- 3 \sin{\left(2 w \right)} - \cos{\left(2 w \right)}\right) e^{- 6 w}}{20} + C$$$A


Please try a new game Rotatly