Integrale di $$$\left(\frac{e}{2}\right)^{x}$$$

La calcolatrice troverà l'integrale/primitiva di $$$\left(\frac{e}{2}\right)^{x}$$$, mostrando i passaggi.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int \left(\frac{e}{2}\right)^{x}\, dx$$$.

Soluzione

Apply the exponential rule $$$\int{a^{x} d x} = \frac{a^{x}}{\ln{\left(a \right)}}$$$ with $$$a=\frac{e}{2}$$$:

$${\color{red}{\int{\left(\frac{e}{2}\right)^{x} d x}}} = {\color{red}{\frac{\left(\frac{e}{2}\right)^{x}}{\ln{\left(\frac{e}{2} \right)}}}}$$

Pertanto,

$$\int{\left(\frac{e}{2}\right)^{x} d x} = \frac{\left(\frac{e}{2}\right)^{x}}{\ln{\left(\frac{e}{2} \right)}}$$

Semplifica:

$$\int{\left(\frac{e}{2}\right)^{x} d x} = \frac{\left(\frac{e}{2}\right)^{x}}{1 - \ln{\left(2 \right)}}$$

Aggiungi la costante di integrazione:

$$\int{\left(\frac{e}{2}\right)^{x} d x} = \frac{\left(\frac{e}{2}\right)^{x}}{1 - \ln{\left(2 \right)}}+C$$

Risposta

$$$\int \left(\frac{e}{2}\right)^{x}\, dx = \frac{\left(\frac{e}{2}\right)^{x}}{1 - \ln\left(2\right)} + C$$$A


Please try a new game Rotatly