Integrale di $$$\sin{\left(x \right)} + e$$$
Calcolatore correlato: Calcolatore di integrali definiti e impropri
Il tuo input
Trova $$$\int \left(\sin{\left(x \right)} + e\right)\, dx$$$.
Soluzione
Integra termine per termine:
$${\color{red}{\int{\left(\sin{\left(x \right)} + e\right)d x}}} = {\color{red}{\left(\int{e d x} + \int{\sin{\left(x \right)} d x}\right)}}$$
Applica la regola della costante $$$\int c\, dx = c x$$$ con $$$c=e$$$:
$$\int{\sin{\left(x \right)} d x} + {\color{red}{\int{e d x}}} = \int{\sin{\left(x \right)} d x} + {\color{red}{e x}}$$
L'integrale del seno è $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$:
$$e x + {\color{red}{\int{\sin{\left(x \right)} d x}}} = e x + {\color{red}{\left(- \cos{\left(x \right)}\right)}}$$
Pertanto,
$$\int{\left(\sin{\left(x \right)} + e\right)d x} = e x - \cos{\left(x \right)}$$
Aggiungi la costante di integrazione:
$$\int{\left(\sin{\left(x \right)} + e\right)d x} = e x - \cos{\left(x \right)}+C$$
Risposta
$$$\int \left(\sin{\left(x \right)} + e\right)\, dx = \left(e x - \cos{\left(x \right)}\right) + C$$$A