Integrale di $$$2 x^{2} - y^{2}$$$ rispetto a $$$x$$$

Il calcolatore troverà l'integrale/antiderivata di $$$2 x^{2} - y^{2}$$$ rispetto a $$$x$$$, con i passaggi mostrati.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int \left(2 x^{2} - y^{2}\right)\, dx$$$.

Soluzione

Integra termine per termine:

$${\color{red}{\int{\left(2 x^{2} - y^{2}\right)d x}}} = {\color{red}{\left(\int{2 x^{2} d x} - \int{y^{2} d x}\right)}}$$

Applica la regola della costante $$$\int c\, dx = c x$$$ con $$$c=y^{2}$$$:

$$\int{2 x^{2} d x} - {\color{red}{\int{y^{2} d x}}} = \int{2 x^{2} d x} - {\color{red}{x y^{2}}}$$

Applica la regola del fattore costante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=2$$$ e $$$f{\left(x \right)} = x^{2}$$$:

$$- x y^{2} + {\color{red}{\int{2 x^{2} d x}}} = - x y^{2} + {\color{red}{\left(2 \int{x^{2} d x}\right)}}$$

Applica la regola della potenza $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=2$$$:

$$- x y^{2} + 2 {\color{red}{\int{x^{2} d x}}}=- x y^{2} + 2 {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}=- x y^{2} + 2 {\color{red}{\left(\frac{x^{3}}{3}\right)}}$$

Pertanto,

$$\int{\left(2 x^{2} - y^{2}\right)d x} = \frac{2 x^{3}}{3} - x y^{2}$$

Semplifica:

$$\int{\left(2 x^{2} - y^{2}\right)d x} = x \left(\frac{2 x^{2}}{3} - y^{2}\right)$$

Aggiungi la costante di integrazione:

$$\int{\left(2 x^{2} - y^{2}\right)d x} = x \left(\frac{2 x^{2}}{3} - y^{2}\right)+C$$

Risposta

$$$\int \left(2 x^{2} - y^{2}\right)\, dx = x \left(\frac{2 x^{2}}{3} - y^{2}\right) + C$$$A


Please try a new game Rotatly