Integrale di $$$\frac{\cos{\left(4 t \right)}}{2}$$$
Calcolatore correlato: Calcolatore di integrali definiti e impropri
Il tuo input
Trova $$$\int \frac{\cos{\left(4 t \right)}}{2}\, dt$$$.
Soluzione
Applica la regola del fattore costante $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ con $$$c=\frac{1}{2}$$$ e $$$f{\left(t \right)} = \cos{\left(4 t \right)}$$$:
$${\color{red}{\int{\frac{\cos{\left(4 t \right)}}{2} d t}}} = {\color{red}{\left(\frac{\int{\cos{\left(4 t \right)} d t}}{2}\right)}}$$
Sia $$$u=4 t$$$.
Quindi $$$du=\left(4 t\right)^{\prime }dt = 4 dt$$$ (i passaggi si possono vedere »), e si ha che $$$dt = \frac{du}{4}$$$.
Pertanto,
$$\frac{{\color{red}{\int{\cos{\left(4 t \right)} d t}}}}{2} = \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{4} d u}}}}{2}$$
Applica la regola del fattore costante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{4}$$$ e $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:
$$\frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{4} d u}}}}{2} = \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{4}\right)}}}{2}$$
L'integrale del coseno è $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$\frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{8} = \frac{{\color{red}{\sin{\left(u \right)}}}}{8}$$
Ricordiamo che $$$u=4 t$$$:
$$\frac{\sin{\left({\color{red}{u}} \right)}}{8} = \frac{\sin{\left({\color{red}{\left(4 t\right)}} \right)}}{8}$$
Pertanto,
$$\int{\frac{\cos{\left(4 t \right)}}{2} d t} = \frac{\sin{\left(4 t \right)}}{8}$$
Aggiungi la costante di integrazione:
$$\int{\frac{\cos{\left(4 t \right)}}{2} d t} = \frac{\sin{\left(4 t \right)}}{8}+C$$
Risposta
$$$\int \frac{\cos{\left(4 t \right)}}{2}\, dt = \frac{\sin{\left(4 t \right)}}{8} + C$$$A