Integrale di $$$\left(\frac{x}{2} - 3\right)^{5}$$$

La calcolatrice troverà l'integrale/primitiva di $$$\left(\frac{x}{2} - 3\right)^{5}$$$, mostrando i passaggi.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int \left(\frac{x}{2} - 3\right)^{5}\, dx$$$.

Soluzione

Sia $$$u=\frac{x}{2} - 3$$$.

Quindi $$$du=\left(\frac{x}{2} - 3\right)^{\prime }dx = \frac{dx}{2}$$$ (i passaggi si possono vedere »), e si ha che $$$dx = 2 du$$$.

Quindi,

$${\color{red}{\int{\left(\frac{x}{2} - 3\right)^{5} d x}}} = {\color{red}{\int{2 u^{5} d u}}}$$

Applica la regola del fattore costante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=2$$$ e $$$f{\left(u \right)} = u^{5}$$$:

$${\color{red}{\int{2 u^{5} d u}}} = {\color{red}{\left(2 \int{u^{5} d u}\right)}}$$

Applica la regola della potenza $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=5$$$:

$$2 {\color{red}{\int{u^{5} d u}}}=2 {\color{red}{\frac{u^{1 + 5}}{1 + 5}}}=2 {\color{red}{\left(\frac{u^{6}}{6}\right)}}$$

Ricordiamo che $$$u=\frac{x}{2} - 3$$$:

$$\frac{{\color{red}{u}}^{6}}{3} = \frac{{\color{red}{\left(\frac{x}{2} - 3\right)}}^{6}}{3}$$

Pertanto,

$$\int{\left(\frac{x}{2} - 3\right)^{5} d x} = \frac{\left(\frac{x}{2} - 3\right)^{6}}{3}$$

Semplifica:

$$\int{\left(\frac{x}{2} - 3\right)^{5} d x} = \frac{\left(x - 6\right)^{6}}{192}$$

Aggiungi la costante di integrazione:

$$\int{\left(\frac{x}{2} - 3\right)^{5} d x} = \frac{\left(x - 6\right)^{6}}{192}+C$$

Risposta

$$$\int \left(\frac{x}{2} - 3\right)^{5}\, dx = \frac{\left(x - 6\right)^{6}}{192} + C$$$A


Please try a new game Rotatly