Integrale di $$$\frac{\sqrt{x^{2} - 100}}{x}$$$
Calcolatore correlato: Calcolatore di integrali definiti e impropri
Il tuo input
Trova $$$\int \frac{\sqrt{x^{2} - 100}}{x}\, dx$$$.
Soluzione
Sia $$$x=10 \cosh{\left(u \right)}$$$.
Quindi $$$dx=\left(10 \cosh{\left(u \right)}\right)^{\prime }du = 10 \sinh{\left(u \right)} du$$$ (i passaggi possono essere visti »).
Inoltre, ne consegue che $$$u=\operatorname{acosh}{\left(\frac{x}{10} \right)}$$$.
L'integrando diventa
$$$\frac{\sqrt{x^{2} - 100}}{x} = \frac{\sqrt{100 \cosh^{2}{\left( u \right)} - 100}}{10 \cosh{\left( u \right)}}$$$
Usa l'identità $$$\cosh^{2}{\left( u \right)} - 1 = \sinh^{2}{\left( u \right)}$$$:
$$$\frac{\sqrt{100 \cosh^{2}{\left( u \right)} - 100}}{10 \cosh{\left( u \right)}}=\frac{\sqrt{\cosh^{2}{\left( u \right)} - 1}}{\cosh{\left( u \right)}}=\frac{\sqrt{\sinh^{2}{\left( u \right)}}}{\cosh{\left( u \right)}}$$$
Assumendo che $$$\sinh{\left( u \right)} \ge 0$$$, otteniamo quanto segue:
$$$\frac{\sqrt{\sinh^{2}{\left( u \right)}}}{\cosh{\left( u \right)}} = \frac{\sinh{\left( u \right)}}{\cosh{\left( u \right)}}$$$
L’integrale diventa
$${\color{red}{\int{\frac{\sqrt{x^{2} - 100}}{x} d x}}} = {\color{red}{\int{\frac{10 \sinh^{2}{\left(u \right)}}{\cosh{\left(u \right)}} d u}}}$$
Applica la regola del fattore costante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=10$$$ e $$$f{\left(u \right)} = \frac{\sinh^{2}{\left(u \right)}}{\cosh{\left(u \right)}}$$$:
$${\color{red}{\int{\frac{10 \sinh^{2}{\left(u \right)}}{\cosh{\left(u \right)}} d u}}} = {\color{red}{\left(10 \int{\frac{\sinh^{2}{\left(u \right)}}{\cosh{\left(u \right)}} d u}\right)}}$$
Moltiplica il numeratore e il denominatore per un coseno iperbolico e scrivi tutto il resto in termini di seno iperbolico, usando la formula $$$\cosh^2\left(\alpha \right)=\sinh^2\left(\alpha \right)+1$$$ con $$$\alpha= u $$$:
$$10 {\color{red}{\int{\frac{\sinh^{2}{\left(u \right)}}{\cosh{\left(u \right)}} d u}}} = 10 {\color{red}{\int{\frac{\sinh^{2}{\left(u \right)} \cosh{\left(u \right)}}{\sinh^{2}{\left(u \right)} + 1} d u}}}$$
Sia $$$v=\sinh{\left(u \right)}$$$.
Quindi $$$dv=\left(\sinh{\left(u \right)}\right)^{\prime }du = \cosh{\left(u \right)} du$$$ (i passaggi si possono vedere »), e si ha che $$$\cosh{\left(u \right)} du = dv$$$.
L'integrale può essere riscritto come
$$10 {\color{red}{\int{\frac{\sinh^{2}{\left(u \right)} \cosh{\left(u \right)}}{\sinh^{2}{\left(u \right)} + 1} d u}}} = 10 {\color{red}{\int{\frac{v^{2}}{v^{2} + 1} d v}}}$$
Riscrivi e separa la frazione:
$$10 {\color{red}{\int{\frac{v^{2}}{v^{2} + 1} d v}}} = 10 {\color{red}{\int{\left(1 - \frac{1}{v^{2} + 1}\right)d v}}}$$
Integra termine per termine:
$$10 {\color{red}{\int{\left(1 - \frac{1}{v^{2} + 1}\right)d v}}} = 10 {\color{red}{\left(\int{1 d v} - \int{\frac{1}{v^{2} + 1} d v}\right)}}$$
Applica la regola della costante $$$\int c\, dv = c v$$$ con $$$c=1$$$:
$$- 10 \int{\frac{1}{v^{2} + 1} d v} + 10 {\color{red}{\int{1 d v}}} = - 10 \int{\frac{1}{v^{2} + 1} d v} + 10 {\color{red}{v}}$$
L'integrale di $$$\frac{1}{v^{2} + 1}$$$ è $$$\int{\frac{1}{v^{2} + 1} d v} = \operatorname{atan}{\left(v \right)}$$$:
$$10 v - 10 {\color{red}{\int{\frac{1}{v^{2} + 1} d v}}} = 10 v - 10 {\color{red}{\operatorname{atan}{\left(v \right)}}}$$
Ricordiamo che $$$v=\sinh{\left(u \right)}$$$:
$$- 10 \operatorname{atan}{\left({\color{red}{v}} \right)} + 10 {\color{red}{v}} = - 10 \operatorname{atan}{\left({\color{red}{\sinh{\left(u \right)}}} \right)} + 10 {\color{red}{\sinh{\left(u \right)}}}$$
Ricordiamo che $$$u=\operatorname{acosh}{\left(\frac{x}{10} \right)}$$$:
$$10 \sinh{\left({\color{red}{u}} \right)} - 10 \operatorname{atan}{\left(\sinh{\left({\color{red}{u}} \right)} \right)} = 10 \sinh{\left({\color{red}{\operatorname{acosh}{\left(\frac{x}{10} \right)}}} \right)} - 10 \operatorname{atan}{\left(\sinh{\left({\color{red}{\operatorname{acosh}{\left(\frac{x}{10} \right)}}} \right)} \right)}$$
Pertanto,
$$\int{\frac{\sqrt{x^{2} - 100}}{x} d x} = 10 \sqrt{\frac{x}{10} - 1} \sqrt{\frac{x}{10} + 1} - 10 \operatorname{atan}{\left(\sqrt{\frac{x}{10} - 1} \sqrt{\frac{x}{10} + 1} \right)}$$
Semplifica:
$$\int{\frac{\sqrt{x^{2} - 100}}{x} d x} = \sqrt{x - 10} \sqrt{x + 10} - 10 \operatorname{atan}{\left(\frac{\sqrt{x - 10} \sqrt{x + 10}}{10} \right)}$$
Aggiungi la costante di integrazione:
$$\int{\frac{\sqrt{x^{2} - 100}}{x} d x} = \sqrt{x - 10} \sqrt{x + 10} - 10 \operatorname{atan}{\left(\frac{\sqrt{x - 10} \sqrt{x + 10}}{10} \right)}+C$$
Risposta
$$$\int \frac{\sqrt{x^{2} - 100}}{x}\, dx = \left(\sqrt{x - 10} \sqrt{x + 10} - 10 \operatorname{atan}{\left(\frac{\sqrt{x - 10} \sqrt{x + 10}}{10} \right)}\right) + C$$$A