Integrale di $$$\frac{\sqrt{2}}{4 x \left(x - 3\right)}$$$
Calcolatore correlato: Calcolatore di integrali definiti e impropri
Il tuo input
Trova $$$\int \frac{\sqrt{2}}{4 x \left(x - 3\right)}\, dx$$$.
Soluzione
Applica la regola del fattore costante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\frac{\sqrt{2}}{4}$$$ e $$$f{\left(x \right)} = \frac{1}{x \left(x - 3\right)}$$$:
$${\color{red}{\int{\frac{\sqrt{2}}{4 x \left(x - 3\right)} d x}}} = {\color{red}{\left(\frac{\sqrt{2} \int{\frac{1}{x \left(x - 3\right)} d x}}{4}\right)}}$$
Esegui la scomposizione in fratti semplici (i passaggi possono essere visualizzati »):
$$\frac{\sqrt{2} {\color{red}{\int{\frac{1}{x \left(x - 3\right)} d x}}}}{4} = \frac{\sqrt{2} {\color{red}{\int{\left(\frac{1}{3 \left(x - 3\right)} - \frac{1}{3 x}\right)d x}}}}{4}$$
Integra termine per termine:
$$\frac{\sqrt{2} {\color{red}{\int{\left(\frac{1}{3 \left(x - 3\right)} - \frac{1}{3 x}\right)d x}}}}{4} = \frac{\sqrt{2} {\color{red}{\left(- \int{\frac{1}{3 x} d x} + \int{\frac{1}{3 \left(x - 3\right)} d x}\right)}}}{4}$$
Applica la regola del fattore costante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\frac{1}{3}$$$ e $$$f{\left(x \right)} = \frac{1}{x}$$$:
$$\frac{\sqrt{2} \left(\int{\frac{1}{3 \left(x - 3\right)} d x} - {\color{red}{\int{\frac{1}{3 x} d x}}}\right)}{4} = \frac{\sqrt{2} \left(\int{\frac{1}{3 \left(x - 3\right)} d x} - {\color{red}{\left(\frac{\int{\frac{1}{x} d x}}{3}\right)}}\right)}{4}$$
L'integrale di $$$\frac{1}{x}$$$ è $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$:
$$\frac{\sqrt{2} \left(\int{\frac{1}{3 \left(x - 3\right)} d x} - \frac{{\color{red}{\int{\frac{1}{x} d x}}}}{3}\right)}{4} = \frac{\sqrt{2} \left(\int{\frac{1}{3 \left(x - 3\right)} d x} - \frac{{\color{red}{\ln{\left(\left|{x}\right| \right)}}}}{3}\right)}{4}$$
Applica la regola del fattore costante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\frac{1}{3}$$$ e $$$f{\left(x \right)} = \frac{1}{x - 3}$$$:
$$\frac{\sqrt{2} \left(- \frac{\ln{\left(\left|{x}\right| \right)}}{3} + {\color{red}{\int{\frac{1}{3 \left(x - 3\right)} d x}}}\right)}{4} = \frac{\sqrt{2} \left(- \frac{\ln{\left(\left|{x}\right| \right)}}{3} + {\color{red}{\left(\frac{\int{\frac{1}{x - 3} d x}}{3}\right)}}\right)}{4}$$
Sia $$$u=x - 3$$$.
Quindi $$$du=\left(x - 3\right)^{\prime }dx = 1 dx$$$ (i passaggi si possono vedere »), e si ha che $$$dx = du$$$.
L'integrale diventa
$$\frac{\sqrt{2} \left(- \frac{\ln{\left(\left|{x}\right| \right)}}{3} + \frac{{\color{red}{\int{\frac{1}{x - 3} d x}}}}{3}\right)}{4} = \frac{\sqrt{2} \left(- \frac{\ln{\left(\left|{x}\right| \right)}}{3} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{3}\right)}{4}$$
L'integrale di $$$\frac{1}{u}$$$ è $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$\frac{\sqrt{2} \left(- \frac{\ln{\left(\left|{x}\right| \right)}}{3} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{3}\right)}{4} = \frac{\sqrt{2} \left(- \frac{\ln{\left(\left|{x}\right| \right)}}{3} + \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{3}\right)}{4}$$
Ricordiamo che $$$u=x - 3$$$:
$$\frac{\sqrt{2} \left(- \frac{\ln{\left(\left|{x}\right| \right)}}{3} + \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{3}\right)}{4} = \frac{\sqrt{2} \left(- \frac{\ln{\left(\left|{x}\right| \right)}}{3} + \frac{\ln{\left(\left|{{\color{red}{\left(x - 3\right)}}}\right| \right)}}{3}\right)}{4}$$
Pertanto,
$$\int{\frac{\sqrt{2}}{4 x \left(x - 3\right)} d x} = \frac{\sqrt{2} \left(- \frac{\ln{\left(\left|{x}\right| \right)}}{3} + \frac{\ln{\left(\left|{x - 3}\right| \right)}}{3}\right)}{4}$$
Semplifica:
$$\int{\frac{\sqrt{2}}{4 x \left(x - 3\right)} d x} = \frac{\sqrt{2} \left(- \ln{\left(\left|{x}\right| \right)} + \ln{\left(\left|{x - 3}\right| \right)}\right)}{12}$$
Aggiungi la costante di integrazione:
$$\int{\frac{\sqrt{2}}{4 x \left(x - 3\right)} d x} = \frac{\sqrt{2} \left(- \ln{\left(\left|{x}\right| \right)} + \ln{\left(\left|{x - 3}\right| \right)}\right)}{12}+C$$
Risposta
$$$\int \frac{\sqrt{2}}{4 x \left(x - 3\right)}\, dx = \frac{\sqrt{2} \left(- \ln\left(\left|{x}\right|\right) + \ln\left(\left|{x - 3}\right|\right)\right)}{12} + C$$$A