Integrale di $$$n \left(n - 1\right)$$$

La calcolatrice troverà l'integrale/primitiva di $$$n \left(n - 1\right)$$$, mostrando i passaggi.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int n \left(n - 1\right)\, dn$$$.

Soluzione

Expand the expression:

$${\color{red}{\int{n \left(n - 1\right) d n}}} = {\color{red}{\int{\left(n^{2} - n\right)d n}}}$$

Integra termine per termine:

$${\color{red}{\int{\left(n^{2} - n\right)d n}}} = {\color{red}{\left(- \int{n d n} + \int{n^{2} d n}\right)}}$$

Applica la regola della potenza $$$\int n^{n}\, dn = \frac{n^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=2$$$:

$$- \int{n d n} + {\color{red}{\int{n^{2} d n}}}=- \int{n d n} + {\color{red}{\frac{n^{1 + 2}}{1 + 2}}}=- \int{n d n} + {\color{red}{\left(\frac{n^{3}}{3}\right)}}$$

Applica la regola della potenza $$$\int n^{n}\, dn = \frac{n^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=1$$$:

$$\frac{n^{3}}{3} - {\color{red}{\int{n d n}}}=\frac{n^{3}}{3} - {\color{red}{\frac{n^{1 + 1}}{1 + 1}}}=\frac{n^{3}}{3} - {\color{red}{\left(\frac{n^{2}}{2}\right)}}$$

Pertanto,

$$\int{n \left(n - 1\right) d n} = \frac{n^{3}}{3} - \frac{n^{2}}{2}$$

Semplifica:

$$\int{n \left(n - 1\right) d n} = \frac{n^{2} \left(2 n - 3\right)}{6}$$

Aggiungi la costante di integrazione:

$$\int{n \left(n - 1\right) d n} = \frac{n^{2} \left(2 n - 3\right)}{6}+C$$

Risposta

$$$\int n \left(n - 1\right)\, dn = \frac{n^{2} \left(2 n - 3\right)}{6} + C$$$A


Please try a new game Rotatly