Derivata di $$$x^{3 x}$$$
Calcolatore correlato: Calcolatore di derivate
Il tuo input
Trova $$$\frac{d}{dx} \left(x^{3 x}\right)$$$.
Soluzione
Sia $$$H{\left(x \right)} = x^{3 x}$$$.
Prendi il logaritmo di entrambi i membri: $$$\ln\left(H{\left(x \right)}\right) = \ln\left(x^{3 x}\right)$$$.
Riscrivi il membro di destra usando le proprietà dei logaritmi: $$$\ln\left(H{\left(x \right)}\right) = 3 x \ln\left(x\right)$$$.
Deriva separatamente entrambi i membri dell'equazione: $$$\frac{d}{dx} \left(\ln\left(H{\left(x \right)}\right)\right) = \frac{d}{dx} \left(3 x \ln\left(x\right)\right)$$$.
Deriva il membro sinistro dell’equazione.
La funzione $$$\ln\left(H{\left(x \right)}\right)$$$ è la composizione $$$f{\left(g{\left(x \right)} \right)}$$$ di due funzioni $$$f{\left(u \right)} = \ln\left(u\right)$$$ e $$$g{\left(x \right)} = H{\left(x \right)}$$$.
Applica la regola della catena $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:
$${\color{red}\left(\frac{d}{dx} \left(\ln\left(H{\left(x \right)}\right)\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right) \frac{d}{dx} \left(H{\left(x \right)}\right)\right)}$$La derivata del logaritmo naturale è $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$:
$${\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} \frac{d}{dx} \left(H{\left(x \right)}\right) = {\color{red}\left(\frac{1}{u}\right)} \frac{d}{dx} \left(H{\left(x \right)}\right)$$Torna alla variabile originale:
$$\frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{{\color{red}\left(u\right)}} = \frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{{\color{red}\left(H{\left(x \right)}\right)}}$$Quindi, $$$\frac{d}{dx} \left(\ln\left(H{\left(x \right)}\right)\right) = \frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{H{\left(x \right)}}$$$.
Deriva il membro destro dell’equazione.
Applica la regola del multiplo costante $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ con $$$c = 3$$$ e $$$f{\left(x \right)} = x \ln\left(x\right)$$$:
$${\color{red}\left(\frac{d}{dx} \left(3 x \ln\left(x\right)\right)\right)} = {\color{red}\left(3 \frac{d}{dx} \left(x \ln\left(x\right)\right)\right)}$$Applica la regola del prodotto $$$\frac{d}{dx} \left(f{\left(x \right)} g{\left(x \right)}\right) = \frac{d}{dx} \left(f{\left(x \right)}\right) g{\left(x \right)} + f{\left(x \right)} \frac{d}{dx} \left(g{\left(x \right)}\right)$$$ a $$$f{\left(x \right)} = x$$$ e $$$g{\left(x \right)} = \ln\left(x\right)$$$:
$$3 {\color{red}\left(\frac{d}{dx} \left(x \ln\left(x\right)\right)\right)} = 3 {\color{red}\left(\frac{d}{dx} \left(x\right) \ln\left(x\right) + x \frac{d}{dx} \left(\ln\left(x\right)\right)\right)}$$La derivata del logaritmo naturale è $$$\frac{d}{dx} \left(\ln\left(x\right)\right) = \frac{1}{x}$$$:
$$3 x {\color{red}\left(\frac{d}{dx} \left(\ln\left(x\right)\right)\right)} + 3 \ln\left(x\right) \frac{d}{dx} \left(x\right) = 3 x {\color{red}\left(\frac{1}{x}\right)} + 3 \ln\left(x\right) \frac{d}{dx} \left(x\right)$$Applica la regola della potenza $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ con $$$n = 1$$$, in altre parole, $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$3 \ln\left(x\right) {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} + 3 = 3 \ln\left(x\right) {\color{red}\left(1\right)} + 3$$Quindi, $$$\frac{d}{dx} \left(3 x \ln\left(x\right)\right) = 3 \ln\left(x\right) + 3$$$.
Pertanto, $$$\frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{H{\left(x \right)}} = 3 \ln\left(x\right) + 3$$$.
Pertanto, $$$\frac{d}{dx} \left(H{\left(x \right)}\right) = \left(3 \ln\left(x\right) + 3\right) H{\left(x \right)} = 3 x^{3 x} \left(\ln\left(x\right) + 1\right)$$$.
Risposta
$$$\frac{d}{dx} \left(x^{3 x}\right) = 3 x^{3 x} \left(\ln\left(x\right) + 1\right)$$$A