Forma polare di $$$- \frac{1}{2} - \frac{\sqrt{3} i}{2}$$$
Il tuo input
Trova la forma polare di $$$- \frac{1}{2} - \frac{\sqrt{3} i}{2}$$$.
Soluzione
La forma standard del numero complesso è $$$- \frac{1}{2} - \frac{\sqrt{3} i}{2}$$$.
Per un numero complesso $$$a + b i$$$, la forma polare è data da $$$r \left(\cos{\left(\theta \right)} + i \sin{\left(\theta \right)}\right)$$$, dove $$$r = \sqrt{a^{2} + b^{2}}$$$ e $$$\theta = \operatorname{atan}{\left(\frac{b}{a} \right)}$$$.
Abbiamo che $$$a = - \frac{1}{2}$$$ e $$$b = - \frac{\sqrt{3}}{2}$$$.
Quindi, $$$r = \sqrt{\left(- \frac{1}{2}\right)^{2} + \left(- \frac{\sqrt{3}}{2}\right)^{2}} = 1$$$.
Inoltre, $$$\theta = \operatorname{atan}{\left(\frac{- \frac{\sqrt{3}}{2}}{- \frac{1}{2}} \right)} - \pi = - \frac{2 \pi}{3}$$$.
Pertanto, $$$- \frac{1}{2} - \frac{\sqrt{3} i}{2} = \cos{\left(- \frac{2 \pi}{3} \right)} + i \sin{\left(- \frac{2 \pi}{3} \right)}$$$.
Risposta
$$$- \frac{1}{2} - \frac{\sqrt{3} i}{2} = \cos{\left(- \frac{2 \pi}{3} \right)} + i \sin{\left(- \frac{2 \pi}{3} \right)} = \cos{\left(-120^{\circ} \right)} + i \sin{\left(-120^{\circ} \right)}$$$A