Calcolatore di decomposizione in fratti semplici
Trova la scomposizione in fratti semplici passo dopo passo
Questo calcolatore online calcolerà la decomposizione in fratti semplici della funzione razionale, con i passaggi mostrati.
Solution
Your input: perform the partial fraction decomposition of $$$\frac{1}{x^{2} - 78 x}$$$
Simplify the expression: $$$\frac{1}{x^{2} - 78 x}=\frac{1}{x \left(x - 78\right)}$$$
The form of the partial fraction decomposition is
$$\frac{1}{x \left(x - 78\right)}=\frac{A}{x}+\frac{B}{x - 78}$$
Write the right-hand side as a single fraction:
$$\frac{1}{x \left(x - 78\right)}=\frac{x B + \left(x - 78\right) A}{x \left(x - 78\right)}$$
The denominators are equal, so we require the equality of the numerators:
$$1=x B + \left(x - 78\right) A$$
Expand the right-hand side:
$$1=x A + x B - 78 A$$
Collect up the like terms:
$$1=x \left(A + B\right) - 78 A$$
The coefficients near the like terms should be equal, so the following system is obtained:
$$\begin{cases} A + B = 0\\- 78 A = 1 \end{cases}$$
Solving it (for steps, see system of equations calculator), we get that $$$A=- \frac{1}{78}$$$, $$$B=\frac{1}{78}$$$
Therefore,
$$\frac{1}{x \left(x - 78\right)}=\frac{- \frac{1}{78}}{x}+\frac{\frac{1}{78}}{x - 78}$$
Answer: $$$\frac{1}{x^{2} - 78 x}=\frac{- \frac{1}{78}}{x}+\frac{\frac{1}{78}}{x - 78}$$$