Magnitudo $$$\left\langle \cos{\left(t \right)}, - \sin{\left(t \right)}, 2 \sqrt{2}\right\rangle$$$

Kalkulator akan menghitung magnitudo (panjang, norma) dari vektor $$$\left\langle \cos{\left(t \right)}, - \sin{\left(t \right)}, 2 \sqrt{2}\right\rangle$$$, dengan langkah-langkah yang ditunjukkan.
$$$\langle$$$ $$$\rangle$$$
Dipisahkan dengan koma.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan besar (panjang) $$$\mathbf{\vec{u}} = \left\langle \cos{\left(t \right)}, - \sin{\left(t \right)}, 2 \sqrt{2}\right\rangle$$$.

Solusi

Besarnya suatu vektor dinyatakan dengan rumus $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{\sum_{i=1}^{n} \left|{u_{i}}\right|^{2}}$$$.

Jumlah kuadrat dari nilai mutlak koordinat adalah $$$\left|{\cos{\left(t \right)}}\right|^{2} + \left|{- \sin{\left(t \right)}}\right|^{2} + \left|{2 \sqrt{2}}\right|^{2} = \sin^{2}{\left(t \right)} + \cos^{2}{\left(t \right)} + 8$$$.

Oleh karena itu, besar vektor adalah $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{\sin^{2}{\left(t \right)} + \cos^{2}{\left(t \right)} + 8} = 3$$$.

Jawaban

Besarnya adalah $$$3$$$A.


Please try a new game Rotatly