Magnitudo $$$\left\langle - \frac{\cos{\left(t \right)}}{2}, 0, - \frac{\sin{\left(t \right)}}{2}\right\rangle$$$

Kalkulator akan menghitung magnitudo (panjang, norma) dari vektor $$$\left\langle - \frac{\cos{\left(t \right)}}{2}, 0, - \frac{\sin{\left(t \right)}}{2}\right\rangle$$$, dengan langkah-langkah yang ditunjukkan.
$$$\langle$$$ $$$\rangle$$$
Dipisahkan dengan koma.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan besar (panjang) $$$\mathbf{\vec{u}} = \left\langle - \frac{\cos{\left(t \right)}}{2}, 0, - \frac{\sin{\left(t \right)}}{2}\right\rangle$$$.

Solusi

Besarnya suatu vektor dinyatakan dengan rumus $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{\sum_{i=1}^{n} \left|{u_{i}}\right|^{2}}$$$.

Jumlah kuadrat dari nilai mutlak koordinat adalah $$$\left|{- \frac{\cos{\left(t \right)}}{2}}\right|^{2} + \left|{0}\right|^{2} + \left|{- \frac{\sin{\left(t \right)}}{2}}\right|^{2} = \frac{\sin^{2}{\left(t \right)}}{4} + \frac{\cos^{2}{\left(t \right)}}{4}$$$.

Oleh karena itu, besar vektor adalah $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{\frac{\sin^{2}{\left(t \right)}}{4} + \frac{\cos^{2}{\left(t \right)}}{4}} = \frac{1}{2}$$$.

Jawaban

Besarnya adalah $$$\frac{1}{2} = 0.5$$$A.


Please try a new game Rotatly