Magnitudo $$$\left\langle - \frac{75 \cos{\left(5 t \right)}}{17}, - \frac{75 \sin{\left(5 t \right)}}{17}, 0\right\rangle$$$
Masukan Anda
Temukan besar (panjang) $$$\mathbf{\vec{u}} = \left\langle - \frac{75 \cos{\left(5 t \right)}}{17}, - \frac{75 \sin{\left(5 t \right)}}{17}, 0\right\rangle$$$.
Solusi
Besarnya suatu vektor dinyatakan dengan rumus $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{\sum_{i=1}^{n} \left|{u_{i}}\right|^{2}}$$$.
Jumlah kuadrat dari nilai mutlak koordinat adalah $$$\left|{- \frac{75 \cos{\left(5 t \right)}}{17}}\right|^{2} + \left|{- \frac{75 \sin{\left(5 t \right)}}{17}}\right|^{2} + \left|{0}\right|^{2} = \frac{5625 \sin^{2}{\left(5 t \right)}}{289} + \frac{5625 \cos^{2}{\left(5 t \right)}}{289}.$$$
Oleh karena itu, besar vektor adalah $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{\frac{5625 \sin^{2}{\left(5 t \right)}}{289} + \frac{5625 \cos^{2}{\left(5 t \right)}}{289}} = \frac{75}{17}.$$$
Jawaban
Besarnya adalah $$$\frac{75}{17}\approx 4.411764705882353$$$A.