Nilai eigen dan vektor eigen dari $$$\left[\begin{array}{cc}1 & 2\\3 & 4\end{array}\right]$$$

Kalkulator akan menemukan nilai eigen dan vektor eigen dari matriks persegi $$$2$$$x$$$2$$$ $$$\left[\begin{array}{cc}1 & 2\\3 & 4\end{array}\right]$$$, dengan menampilkan langkah-langkahnya.

Kalkulator terkait: Kalkulator Polinom Karakteristik

A

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Tentukan nilai eigen dan vektor eigen dari $$$\left[\begin{array}{cc}1 & 2\\3 & 4\end{array}\right]$$$.

Solusi

Mulailah dengan membentuk matriks baru dengan mengurangkan $$$\lambda$$$ dari entri-entri diagonal matriks yang diberikan: $$$\left[\begin{array}{cc}1 - \lambda & 2\\3 & 4 - \lambda\end{array}\right]$$$.

Determinan matriks yang diperoleh adalah $$$\lambda^{2} - 5 \lambda - 2$$$ (untuk langkah-langkah, lihat kalkulator determinan).

Selesaikan persamaan $$$\lambda^{2} - 5 \lambda - 2 = 0$$$.

Akar-akarnya adalah $$$\lambda_{1} = - \frac{-5 + \sqrt{33}}{2}$$$, $$$\lambda_{2} = \frac{5 + \sqrt{33}}{2}$$$ (untuk langkah-langkahnya, lihat penyelesai persamaan).

Ini adalah nilai-nilai eigen.

Selanjutnya, cari vektor eigen.

  • $$$\lambda = - \frac{-5 + \sqrt{33}}{2}$$$

    $$$\left[\begin{array}{cc}1 - \lambda & 2\\3 & 4 - \lambda\end{array}\right] = \left[\begin{array}{cc}\frac{-5 + \sqrt{33}}{2} + 1 & 2\\3 & \frac{-5 + \sqrt{33}}{2} + 4\end{array}\right]$$$

    Ruang nol dari matriks ini adalah $$$\left\{\left[\begin{array}{c}- \frac{3 + \sqrt{33}}{6}\\1\end{array}\right]\right\}$$$ (untuk langkah-langkahnya, lihat kalkulator ruang nol).

    Ini adalah vektor eigen.

  • $$$\lambda = \frac{5 + \sqrt{33}}{2}$$$

    $$$\left[\begin{array}{cc}1 - \lambda & 2\\3 & 4 - \lambda\end{array}\right] = \left[\begin{array}{cc}1 - \frac{5 + \sqrt{33}}{2} & 2\\3 & 4 - \frac{5 + \sqrt{33}}{2}\end{array}\right]$$$

    Ruang nol dari matriks ini adalah $$$\left\{\left[\begin{array}{c}\frac{-3 + \sqrt{33}}{6}\\1\end{array}\right]\right\}$$$ (untuk langkah-langkahnya, lihat kalkulator ruang nol).

    Ini adalah vektor eigen.

Jawaban

Nilai eigen: $$$- \frac{-5 + \sqrt{33}}{2}\approx -0.372281323269014$$$A, kelipatan: $$$1$$$A, vektor eigen: $$$\left[\begin{array}{c}- \frac{3 + \sqrt{33}}{6}\\1\end{array}\right]\approx \left[\begin{array}{c}-1.457427107756338\\1\end{array}\right]$$$A.

Nilai eigen: $$$\frac{5 + \sqrt{33}}{2}\approx 5.372281323269014$$$A, kelipatan: $$$1$$$A, vektor eigen: $$$\left[\begin{array}{c}\frac{-3 + \sqrt{33}}{6}\\1\end{array}\right]\approx \left[\begin{array}{c}0.457427107756338\\1\end{array}\right]$$$A.


Please try a new game Rotatly