Vektor singgung satuan untuk $$$\mathbf{\vec{r}\left(t\right)} = \left\langle \sin^{3}{\left(t \right)}, \cos^{3}{\left(t \right)}, \sin^{2}{\left(t \right)}\right\rangle$$$
Kalkulator terkait: Kalkulator Vektor Normal Satuan, Kalkulator Vektor Binormal Satuan
Masukan Anda
Temukan vektor tangen satuan untuk $$$\mathbf{\vec{r}\left(t\right)} = \left\langle \sin^{3}{\left(t \right)}, \cos^{3}{\left(t \right)}, \sin^{2}{\left(t \right)}\right\rangle$$$.
Solusi
Untuk menentukan vektor tangen satuan, kita perlu mencari turunan dari $$$\mathbf{\vec{r}\left(t\right)}$$$ (vektor tangen) kemudian menormalkannya (mencari vektor satuan).
$$$\mathbf{\vec{r}^{\prime}\left(t\right)} = \left\langle 3 \sin^{2}{\left(t \right)} \cos{\left(t \right)}, - 3 \sin{\left(t \right)} \cos^{2}{\left(t \right)}, \sin{\left(2 t \right)}\right\rangle$$$ (untuk langkah-langkahnya, lihat kalkulator turunan).
Temukan vektor satuan: $$$\mathbf{\vec{T}\left(t\right)} = \left\langle \frac{6 \sqrt{26} \sin^{2}{\left(t \right)} \cos{\left(t \right)}}{13 \sqrt{1 - \cos{\left(4 t \right)}}}, - \frac{6 \sqrt{26} \sin{\left(t \right)} \cos^{2}{\left(t \right)}}{13 \sqrt{1 - \cos{\left(4 t \right)}}}, \frac{2 \sqrt{26} \sin{\left(2 t \right)}}{13 \sqrt{1 - \cos{\left(4 t \right)}}}\right\rangle$$$ (untuk langkah-langkahnya, lihat kalkulator vektor satuan).
Jawaban
Vektor tangen satuan adalah $$$\mathbf{\vec{T}\left(t\right)} = \left\langle \frac{6 \sqrt{26} \sin^{2}{\left(t \right)} \cos{\left(t \right)}}{13 \sqrt{1 - \cos{\left(4 t \right)}}}, - \frac{6 \sqrt{26} \sin{\left(t \right)} \cos^{2}{\left(t \right)}}{13 \sqrt{1 - \cos{\left(4 t \right)}}}, \frac{2 \sqrt{26} \sin{\left(2 t \right)}}{13 \sqrt{1 - \cos{\left(4 t \right)}}}\right\rangle.$$$A