Vektor singgung satuan untuk $$$\mathbf{\vec{r}\left(t\right)} = \left\langle \cos{\left(t \right)}, \sqrt{3} t, \sin{\left(t \right)}\right\rangle$$$

Kalkulator akan menemukan vektor tangen satuan untuk $$$\mathbf{\vec{r}\left(t\right)} = \left\langle \cos{\left(t \right)}, \sqrt{3} t, \sin{\left(t \right)}\right\rangle$$$, dengan langkah-langkah yang ditunjukkan.

Kalkulator terkait: Kalkulator Vektor Normal Satuan, Kalkulator Vektor Binormal Satuan

$$$\langle$$$ $$$\rangle$$$
Dipisahkan dengan koma.
Biarkan kosong jika Anda tidak memerlukan vektor pada titik tertentu.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan vektor tangen satuan untuk $$$\mathbf{\vec{r}\left(t\right)} = \left\langle \cos{\left(t \right)}, \sqrt{3} t, \sin{\left(t \right)}\right\rangle$$$.

Solusi

Untuk menentukan vektor tangen satuan, kita perlu mencari turunan dari $$$\mathbf{\vec{r}\left(t\right)}$$$ (vektor tangen) kemudian menormalkannya (mencari vektor satuan).

$$$\mathbf{\vec{r}^{\prime}\left(t\right)} = \left\langle - \sin{\left(t \right)}, \sqrt{3}, \cos{\left(t \right)}\right\rangle$$$ (untuk langkah-langkahnya, lihat kalkulator turunan).

Temukan vektor satuan: $$$\mathbf{\vec{T}\left(t\right)} = \left\langle - \frac{\sin{\left(t \right)}}{2}, \frac{\sqrt{3}}{2}, \frac{\cos{\left(t \right)}}{2}\right\rangle$$$ (untuk langkah-langkahnya, lihat kalkulator vektor satuan).

Jawaban

Vektor tangen satuan adalah $$$\mathbf{\vec{T}\left(t\right)} = \left\langle - \frac{\sin{\left(t \right)}}{2}, \frac{\sqrt{3}}{2}, \frac{\cos{\left(t \right)}}{2}\right\rangle$$$A.


Please try a new game Rotatly