Vektor singgung satuan untuk $$$\mathbf{\vec{r}\left(t\right)} = \left\langle \cos{\left(t \right)}, \sqrt{3} t, \sin{\left(t \right)}\right\rangle$$$
Kalkulator terkait: Kalkulator Vektor Normal Satuan, Kalkulator Vektor Binormal Satuan
Masukan Anda
Temukan vektor tangen satuan untuk $$$\mathbf{\vec{r}\left(t\right)} = \left\langle \cos{\left(t \right)}, \sqrt{3} t, \sin{\left(t \right)}\right\rangle$$$.
Solusi
Untuk menentukan vektor tangen satuan, kita perlu mencari turunan dari $$$\mathbf{\vec{r}\left(t\right)}$$$ (vektor tangen) kemudian menormalkannya (mencari vektor satuan).
$$$\mathbf{\vec{r}^{\prime}\left(t\right)} = \left\langle - \sin{\left(t \right)}, \sqrt{3}, \cos{\left(t \right)}\right\rangle$$$ (untuk langkah-langkahnya, lihat kalkulator turunan).
Temukan vektor satuan: $$$\mathbf{\vec{T}\left(t\right)} = \left\langle - \frac{\sin{\left(t \right)}}{2}, \frac{\sqrt{3}}{2}, \frac{\cos{\left(t \right)}}{2}\right\rangle$$$ (untuk langkah-langkahnya, lihat kalkulator vektor satuan).
Jawaban
Vektor tangen satuan adalah $$$\mathbf{\vec{T}\left(t\right)} = \left\langle - \frac{\sin{\left(t \right)}}{2}, \frac{\sqrt{3}}{2}, \frac{\cos{\left(t \right)}}{2}\right\rangle$$$A.