Integral dari $$$y^{x}$$$ terhadap $$$x$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int y^{x}\, dx$$$.
Solusi
Apply the exponential rule $$$\int{a^{x} d x} = \frac{a^{x}}{\ln{\left(a \right)}}$$$ with $$$a=y$$$:
$${\color{red}{\int{y^{x} d x}}} = {\color{red}{\frac{y^{x}}{\ln{\left(y \right)}}}}$$
Oleh karena itu,
$$\int{y^{x} d x} = \frac{y^{x}}{\ln{\left(y \right)}}$$
Tambahkan konstanta integrasi:
$$\int{y^{x} d x} = \frac{y^{x}}{\ln{\left(y \right)}}+C$$
Jawaban
$$$\int y^{x}\, dx = \frac{y^{x}}{\ln\left(y\right)} + C$$$A
Please try a new game Rotatly