Integral dari $$$\left(\cos{\left(t \right)} + 1\right) \sin{\left(t \right)}$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \left(\cos{\left(t \right)} + 1\right) \sin{\left(t \right)}\, dt$$$.
Solusi
Misalkan $$$u=\cos{\left(t \right)} + 1$$$.
Kemudian $$$du=\left(\cos{\left(t \right)} + 1\right)^{\prime }dt = - \sin{\left(t \right)} dt$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$\sin{\left(t \right)} dt = - du$$$.
Integral tersebut dapat ditulis ulang sebagai
$${\color{red}{\int{\left(\cos{\left(t \right)} + 1\right) \sin{\left(t \right)} d t}}} = {\color{red}{\int{\left(- u\right)d u}}}$$
Terapkan aturan pengali konstanta $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ dengan $$$c=-1$$$ dan $$$f{\left(u \right)} = u$$$:
$${\color{red}{\int{\left(- u\right)d u}}} = {\color{red}{\left(- \int{u d u}\right)}}$$
Terapkan aturan pangkat $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ dengan $$$n=1$$$:
$$- {\color{red}{\int{u d u}}}=- {\color{red}{\frac{u^{1 + 1}}{1 + 1}}}=- {\color{red}{\left(\frac{u^{2}}{2}\right)}}$$
Ingat bahwa $$$u=\cos{\left(t \right)} + 1$$$:
$$- \frac{{\color{red}{u}}^{2}}{2} = - \frac{{\color{red}{\left(\cos{\left(t \right)} + 1\right)}}^{2}}{2}$$
Oleh karena itu,
$$\int{\left(\cos{\left(t \right)} + 1\right) \sin{\left(t \right)} d t} = - \frac{\left(\cos{\left(t \right)} + 1\right)^{2}}{2}$$
Tambahkan konstanta integrasi:
$$\int{\left(\cos{\left(t \right)} + 1\right) \sin{\left(t \right)} d t} = - \frac{\left(\cos{\left(t \right)} + 1\right)^{2}}{2}+C$$
Jawaban
$$$\int \left(\cos{\left(t \right)} + 1\right) \sin{\left(t \right)}\, dt = - \frac{\left(\cos{\left(t \right)} + 1\right)^{2}}{2} + C$$$A